
Distribution Statement A
Approved for public release: distribution unlimited.

Data Analytics and Visualization

Environment for xAPI and the Total

Learning Architecture
DAVE Learning Analytics Algorithms

8 November 2019

This work was supported by the U.S. Advanced Distributed Learning (ADL) Initiative
(HQ0034-18-C-0040). The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the ADL Initiative or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government purposes.

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

February 2018 - November 2019

Data Analytics and Visualization Environment
for xAPI and the Total Learning Architecture:
DAVE Learning Analytics Algorithms

N/A

N/A

UU

N/A

Data Analytics, Data Algorithms, Primitives, Data Visualizations, Analytics, Algorithms, Visualizations, ADL, Advanced
Distributed Learning, DAVE, Data Analytics and Visualization Environment

N/A

Research Report

U

0603769D8Z

HQ0034-18-C-0040

U

Blake-Plock, Shelly.

Nick Armendariz

OUSD Personnel & Readiness
Advanced Distributed Learning Initiative
13501 Ingenuity Drive, Suite 248
Orlando, Florida 32826

407-381-5550

This report introduces a language for defining the functionality of learning analytics algorithms in terms of Operations, Primitives
and Algorithms which will be used to define Algorithms corresponding to an initial set of learning analytics questions. Additional
questions may be added to this set in the future. This document will be updated to include additional Operations, Primitives, and
Algorithms as they are defined by the Author(s) of this report or by members of the Open Source Community. The formal
definitions in this document are optimized for understandability and conceptual presentation meaning they are not presented as, or
intended to be, the most computationally efficient definition possible. The formal definitions are intended to serve as referential
documentation of methodologies and programmatic strategies for handling the processing of xAPI data.

Distribution A

08-11-2019

OUSD/P&R/FE&T/ADLI

Yet Analytics, Inc.
201 E Baltimore Street
Suite. 630
Baltimore, MD 21202

U

Data Analytics and Visualization Environment

for xAPI and the Total Learning Architecture:

DAVE Learning Analytics Algorithms

Yet Analytics, Inc.
201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA

November 8, 2019

1

Introduction

This report introduces a language for defining the functionality of learning ana-
lytics algorithms in terms of Operations, Primitives and Algorithms which
will be used to define Algorithms corresponding to an initial set of learning an-
alytics questions. Additional questions may be added to this set in the future.
This document will be updated to include additional Operations, Primitives, and
Algorithms as they are defined by the Author(s) of this report or by members of
the Open Source Community. Updates may also address refinement of existing
definitions, thus this document is subject to continuous change but those which
are significant will be documented within the DAVE change log. Any changes
made to this report or to the DAVE github repository should follow the con-
ventions established in the Contributing Wiki Page. The formal definitions in
this document are optimized for understandability and conceptual presentation
meaning they are not presented as, or intended to be, the most computation-
ally efficient definition possible. The formal definitions are intended to serve
as referential documentation of methodologies and programmatic strategies for
handling the processing of xAPI data.

The structure of this document is as follows:

1. An Introduction to Z notation and its usage in this document

2. A formal specification for xAPI written in Z

3. Terminology: Operations, Primitives and Algorithms

4. What is an Operation

5. What is a Primitive

6. What is an Algorithm

7. Foundational Operations

8. Common Primitives

9. Example Algorithm

(a) Init

(b) Relevant?

(c) Accept?

(d) Step

(e) Result

1

https://github.com/yetanalytics/dave
https://github.com/yetanalytics/dave/wiki/Contributing

1 Z Notation Introduction

The following subsections provide a high level overview of select properties of Z
Notation based on ”The Z Notation: A Reference Manual” by J. M. Spivey. A
copy of this reference manual can be found at dave/docs/z/Z-notation reference
manual.pdf. In many cases, definitions will be pulled directly from the reference
manual and when this occurs, the relevant page number(s) will be included. For
a proper introduction with tutorial examples, see chapter 1, ”Tutorial Introduc-
tion” from pages 1 to 23. For the LaTeX symbols used to write Z, see the
reference document found at dave/docs/z/zed-csp-documentation.pdf.

1.1 Decorations

The following decorations are used throughout this document and are taken
directly from the reference manual. For a complete summary of the Syntax of
Z, see chapter 6, Syntax Summary, starting on page 142.

′ [indicates final state of an operation]

? [indicates input to an operation]

! [indicates output of an operation]

∆ [indicates the schema results in a change to the state space]

Ξ [indicates the schema does not result in a change to the state space]

>> [indicates output of the left schema is input to the right schema]

1.2 Types

Objects have a type which characterizes them and distinguish them from other
kinds of objects.

• Basic types are sets of objects which have no internal structure of interest
meaning the concrete definition of the members is not relevant, only their
shared type.

• Free types are used to describe (potentially nested and/or recursive) sets
of objects. In the most simple case, a free type can be an enumeration of
constants.

Within the xAPI Formal Specification, both of these types are used to describe
the Inverse Functional Identifier property.

• Introduction of the basic typesMBOX, MBOX SHA1SUM , OPENID
and ACCOUNT allows the specification to talk about these constraints
within the xAPI specification without defining their exact structure

• The free type IFI is defined as one of the above basic types meaning
an object of type IFI is of type MBOX or MBOX SHA1SUM or
OPENID or ACCOUNT .

2

https://github.com/adlnet/xAPI-Spec/blob/master/xAPI-Data.md#inversefunctional

Types can be composed together to form composite types and thus complex
objects.

[MBOX,MBOX SHA1SUM,OPENID,ACCOUNT]

IFI ::= MBOX |MBOX SHA1SUM |OPENID |ACCOUNT

Within the xAPI Formal Specification, IFI is used within the definition of an
agent as presented in the schema Agent.

Agent
agent : AGENT
objectType : OBJECTTY PE
name : F1 #1
ifi : IFI

objectType = Agent
agent = {ifi} ∪ P{name, objectType}

See section 2.2, pages 28 to 34, and chapter 3, pages 42 to 85, for more infor-
mation about Schemas and the Z Language.

1.3 Sets

A collection of elements that all share a type. A set is characterized solely by
which objects are members and which are not. Both the order and repetition
of objects are ignored. Sets are written in one of two ways:

• listing their elements

• by a property which is characteristic of the elements of the set.

such that the following law from page 55 holds for some object y

y ∈ {x1, ..., xn} ⇐⇒ y = x1 ∨ ... ∨ y = xn

1.4 Ordered Pairs

Two objects (x, y) where x is paired with y. An n-tuple is the pairing of n
objects together such that equality between two n-tuple pairs is given by the
law from page 55

(x1, ..., xn) = (y1, ..., yn) ⇐⇒ x1 = y1 ∧ ... ∧ xn = yn

When ordered pairs are used with respect to application (as seen on page 60)

fx⇒ f(x) ⇐⇒ (x, y) ∈ f

which states that f(x) is defined if and only if there is a unique value y which
result from fx Additionally, application associates to the left

fxy ⇒ (fx)y ⇒ (f(x), y)

meaning f(x) results in a function which is then applied to y.

3

1.5 Sequences

A collection of elements where their ordering matters such that

〈a1, ..., an〉 ⇒ {1 7→ a1, ..., n 7→ an}

as seen on page 115. Additionally, iseq is used to describe a sequence whose
members are distinct.

1.6 Bags

A collection of elements where the number of times an element appears in the
collection is meaningful.

[[a1, ..., an]]⇒ {a1 7→ k1, ..., kn 7→ kn}

As described on page 124, each element ai appears ki times in the list a1, ..., an
such that the number of occurrences of ai within bag A is returned by

countAai ≡ A# ai

1.7 Maps

This document introduces a named subcategory of sets, map of the free type
KV , which are akin to sequences and bags. To enumerate the members of a
map, 〈〈...〉〉 is used but should not be confused with di〈〈Ei[T]〉〉 within a Free
Type definition. The distinction between the two usages is context dependent
but in general, if 〈〈...〉〉 is used outside of a constructor declaration within a Free
Type definition, it should be assumed to represent a map.

KV ::= base | associate〈〈KV ×X × Y 〉〉

where

base [is a constant which is the empty KV ⇒ 〈〈〉〉]
associate [is a constructor and is inferred to be an injection]

The full enumeration of all properties, constraints and functions specific to a
map with type KV will be defined elsewhere but associate can be understood
to (in the most basic case) operate as follows.

associate(base, xi, yi) = 〈〈(xi, yi)〉〉 ⇒ 〈〈xi 7→ yi〉〉

The enumeration of a map was chosen to be 〈〈...〉〉 as a map is a collection of
injections such that if M is the result of associate(base, xi, yi) from above then

atKey(M,xi) = yi ⇐⇒ xi 7→ yi ∧ (xi, yi) ∈M

4

1.8 Select Operations and Symbols

The follow are defined in Chapter 4 (The Mathematical Tool-kit) within the
reference manual and are used extensively throughout this document. In many
cases, the functions listed here will serve as Operations in the context of Prim-
itives and Algorithms.

1.8.1 Functions

7→ [relate each x ∈ X to at most one y ∈ Y, page 105]

→ [relate each x ∈ X to exactly one y ∈ Y, page 105]

7� [map different elements of x to different y, page 105]

� [7� that are also →, page 105]

7→→ [X 7→ Y where whole of Y is the range, page 105]

→→ [X 7→ Y whole of X as domain and whole of Y as range, page 105]

�→ [map x ∈ X one-to-one with y ∈ Y, page 105]

X 7→ Y == { f : X ↔ Y | (∀x : X; y1, y2 : Y •
(x 7→ y1 ∈ f ∧ (x 7→ y2) ∈ f ⇒ y1 = y2))}

X → Y == { f : X 7→ Y |dom f = X}
X 7� Y == { f : X 7→ Y | (∀x1, x2 : dom f • f(x1) = f(x2)⇒ x1 = x2)}
X � Y == (X 7� Y) ∩ (X → Y)
X 7→→ Y == { f : X 7� Y | ran f = Y }
X →→ Y == (X 7→→ Y) ∩ (X → Y)
X �→ Y == (X →→ Y) ∩ (X � Y)

1.8.2 Ordered Pairs, Maplet and Composition of Relations

first [returns the first element of an ordered pair, page 93]

second [returns the second element of an ordered pair, page 93]

7→ [maplet is a graphic way of expressing an ordered pair, page 95]

dom [set of all x ∈ X related to at least one y ∈ Y by R, page 96]

ran [set of all y ∈ Y related to at least one x ∈ X by R, page 96]
o
9 [The composition of two relationships, page 97]

◦ [The backward composition of two relationships, page 97]

[X,Y]
first : X × Y → X
second : X × Y → Y

∀x : X; y : Y •
first(x, y) = x ∧
second(x, y) = y

5

[X,Y]
7→ : X × Y → X × Y

∀x : X; y : Y •
x 7→ y = (x, y)

[X,Y]
dom : (X ↔ Y)→ PX
ran : (X ↔ Y)→ PY

∀R : X ↔ Y •
domR = {x : X; y : Y |xRy • x}∧
ranR = {x : X; y : Y |xRy • y}

[X,Y, Z]
o
9 : (X ↔ Y)× (Y ↔ Z)→ (X ↔ Z)
◦ : (Y ↔ X)× (X ↔ Y)→ (X ↔ X)

∀Q : X ↔ Y ;R : Y ↔ Z •
Q o

9R = R ◦Q = {x : X; y : Y ; z : Z|
xQy ∧ y R z • x 7→ z}

1.8.3 Numeric

succ [the next natural number, page 109]

.. [set of integers within a range, page 109]

[number of members of a set, page 111]

min [smallest number in a set of numbers, page 113]

max [largest number in a set of numbers, page 113]

succ : N→ N
.. : Z× Z→ PZ

∀n : N • succ(n) = n+ 1
foralla, b : Z •

a .. b = { k : Z | a ≤ k ≤ b}

[X]
: FX → N

∀S : FX •
#S = (µn : N | (∃f : 1 .. n� X • ran f = S))

6

min : P1 Z 7→ Z
max : P1 Z 7→ Z

min = {S : P1 Z;m : Z |
m ∈ S ∧ (∀n : S • m ≤ n) • S 7→ m}

max = {S : P1 Z;m : Z |
m ∈ S ∧ (∀n : S • m ≥ n) • S 7→ m}

1.8.4 Sequences

a [concatenation of two sequences, page 116]

rev [reverse a sequence, page 116]

head [first element of a sequence, page 117]

last [last element of a sequence, page 117]

tail [all elements of a sequence except for the first, page 117]

front [all elements of a sequence except for the last, page 117]

� [sub seq based on provided indices, order maintained, page 118]

� [sub seq based on provided condition, order maintained, page 118]

squash [compacts a fn of positive integers into a sequence, page 118]

a/ [flatten seq of seqs into single seq, page 121]

disjoint [pairs of sets in family have empty intersection, page 122]

partition [union of all pairs of sets = the family set, page 122]

[X]
a : seqX × seqX → seqX

rev : seqX → seqX

∀s, t : seqX •
sa t = s ∪ {n : dom t • n+ #s 7→ t(n)}

∀s : seqX •
revs = (λn : dom s • s(#s− n+ 1))

[X]
head, last : seq1X → X
tail, front : seq1X → seqX

∀s : seq1X •
head s = s(1)∧
last s = s(#s)∧
tail s = (λn : 1 ..#s− 1 • s(n+ 1))∧
front s = (1 ..#s− 1)C s

7

[X]
� : PN1 × seqX → seqX
� : seqX × PX → seqX

squash : (N1 7→ X)→ seqX

∀U : PN1; s : seqX •
U � s = squash(U C s)

∀s : seqX;V : PX •
s � V = squash(sB V)

∀f : N1 7→ X •
squashf = f ◦ (µ p : 1 ..#f �→ dom f | p ◦ succ ◦ p∼ ⊆ (<))

[X]
a/ : seq(seqX)→ seqX

a/〈〉 = 〈〉
∀s : seqX • a/〈s〉 = s
∀q, r : seq(seqX) •

a/(q a r) = (a/ q)a (a/ r)

[I,X]
disjoint : P(I 7→ PX)

partition : (I 7→ PX)↔ PX

∀S : I 7→ PX;T : PX •
(disjoint S ⇐⇒

(∀i, j : domS | i 6= j • S(i) ∩ S(j) = ∅))∧
(S partition T ⇐⇒

disjoint S ∧
⋃
{ i : domS • S(i)} = T)

1.8.5 Bags

count,# [the number of times something appears in a bag, page 124]

⊗ [scaling across a bag, page 124]

] [union of two bags, sum of occurrences, page 126]

−∪ [bag difference, subtract occurrences or zero if negative, page 126]

items [conversion from seq to bag, page 127]

8

[X]
count : bagX �→ (X → N)

: bagX ×X → N
⊗ : N× bagX → bagX

∀B : bagX •
countB = (λx : X • 0)⊕B

∀x : X;B : bag x •
B#x = countB x

∀n : N;B : bagX;x : X •
(n⊗B) #x = n ∗ (B#x)

[X]
] , −∪ : bagX × bagX → bagX

∀B , C : bagX;x : X •
(B] C) #x = B#x+ C #x∧
(B −∪ C) #x = max{B#x − C #x, 0}

[X]
items : seqX → bagX

∀s : seqX;x : X •
(items s) #x = #{ i : dom s | s(i) = x}

9

2 xAPI Formal Specification

The current formal specification only defines xAPI statements abstractly within
the context of Z. A concrete definition for xAPI statements is outside the scope
of this document.

2.1 Basic and Free Types

[MBOX,MBOX SHA1SUM,OPENID,ACCOUNT]

• Basic Types for the abstract representation of the different forms of Inverse
Functional Identifiers found in xAPI

[CHOICES, SCALE,SOURCE, TARGET, STEPS]

• Basic Types for the abstract representation of the different forms of Inter-
action Components found in xAPI

IFI ::=MBOX |MBOX SHA1SUM |OPENID |ACCOUNT

• Free Type unique to Agents and Groups, The concrete definition of the
listed Basic Types is outside the scope of this specification

OBJECTTY PE ::=Agent |Group |SubStatement |StatementRef |Activity

• A type which can be present in all activities as defined by the xAPI spec-
ification

INTERACTIONTY PE ::= true−false | choice | fill−in | long−fill−in |matching |
performance | sequencing | likert |numeric | other

• A type which represents the possible interactionTypes as defined within
the xAPI specification

INTERACTIONCOMPONENT ::= CHOICES |SCALE |SOURCE |TARGET |STEPS

• A type which represents the possible interaction components as defined
within the xAPI specification

• the concrete definition of the listed Basic Types is outside the scope of
this specification

CONTEXTTY PES ::= parent | grouping | category | other

• A type which represents the possible context types as defined within the
xAPI specification

[STATEMENT]

• Basic type for an xAPI data point

[AGENT,GROUP]

• Basic types for Agents and collections of Agents

10

2.2 Id Schema

Id
id : F1 #1

• the schema Id introduces the component id which is a non-empty, finite
set of 1 value

2.3 Schemas for Agents, Groups and Actors

Agent
agent : AGENT
objectType : OBJECTTY PE
name : F1 #1
ifi : IFI

objectType = Agent
agent = {ifi} ∪ P{name, objectType}

• The schema Agent introduces the component agent which is a set consist-
ing of an ifi and optionally an objectType and/or name

Member
Agent
member : F1

member = {a : AGENT | ∀an : ai..aj • i ≤ n ≤ j • a = agent}

• The schema Member introduces the component member which is a set of
objects a, where for every a within a0..an, a is an agent

Group
Member
group : GROUP
objectType : OBJECTTY PE
ifi : IFI
name : F1 #1

objectType = Group
group = {objectType, name,member} ∨ {objectType,member}∨

{objectType, ifi} ∪ P{name,member}

• The schema Group introduces the component group which is of type
GROUP and is a set of either objectType and member with optionaly
name or objectType and ifi with optionally name and/or member

11

Actor
Agent
Group
actor : AGENT ∨GROUP

actor = agent ∨ group

• The schema Actor introduces the component actor which is either an
agent or group

2.4 Verb Schema

V erb
Id
display, verb : F1

verb = {id, display} ∨ {id}

• The schema V erb introduces the component verb which is a set that con-
sists of either id and the non-empty, finite set display or just id

2.5 Object Schema

Extensions
extensions, extensionV al : F1

extensionId : F1 #1

extensions = {e : (extensionId, extensionV al) | ∀en : ei..ej • i ≤ n ≤ j •
(extensionIdi, extensionV ali) ∨ (extensionIdi, extensionV alj)∧
(extensionIdj , extensionV ali) ∨ (extensionIdj , extensionV alj)∧
extensionIdi 6= extensionIdj}

• The schema Extensions introduces the component extensions which is
a non-empty, finite set that consists of ordered pairs of extensionId and
extensionV al. Different extensionIds can have the same extensionV al
but there can not be two identical extensionId values

• extensionId is a non-empty, finite set with one value

• extensionV al is a non-empty, finite set

InteractionActivity
interactionType : INTERACTIONTY PE
correctResponsePattern : seq1

interactionComponent : INTERACTIONCOMPONENT

interactionActivity = {interactionType, correctReponsePattern, interactionComponent}∨
{interactionType, correctResponsePattern}

12

• The schema InteractionActivity introduces the component interactionActivity
which is a set of either interactionType and correctResponsePattern or
interactionType and correctResponsePattern and interactionComponent

Definition
InteractionActivity
Extensions
definition, name, description : F1

type,moreInfo : F1 #1

definition = P1{name, description, type,moreInfo, extensions, interactionActivity}

• The schema Definition introduces the component definition which is
the non-empty, finite power set of name, description, type, moreInfo
and extensions

Object
Id
Definition
Agent
Group
Statement
objectTypeA, objectTypeS, objectTypeSub, objectType : OBJECTTY PE
substatement : STATEMENT
object : F1

substatement = statement
objectTypeA = Activity
objectTypeS = StatementRef
objectTypeSub = SubStatement
objectType = objectTypeA ∨ objectTypeS
object = {id} ∨ {id, objectType} ∨ {id, objectTypeA, definition}

∨{id, definition} ∨ {agent} ∨ {group} ∨ {objectTypeSub, substatement}
∨{id, objectTypeA}

• The schema Object introduces the component object which is a non-empty,
finite set of either id, id and objectType, id and objectTypeA, id and
objectTypeA and definition, agent, group, or substatement

• The schema Statement and the corresponding component statement will
be defined later on in this specification

13

2.6 Result Schema

Score
score : F1

scaled,min,max, raw : Z

scaled = {n : Z | −1.0 ≤ n ≤ 1.0}
min = n < max
max = n > min
raw = {n : Z |min ≤ n ≤ max}
score = P1{scaled, raw,min,max}

• The schema Score introduces the component score which is the non-empty
powerset of min, max, raw and scaled

Result
Score
Extensions
success, completion, response, duration : F1 #1
result : F1

success = {true} ∨ {false}
completion = {true} ∨ {false}
result = P1{score, success, completion, response, duration, extensions}

• The schema Result introduces the component result which is the non-
empty power set of score, success, completion, response, duration and
extensions

2.7 Context Schema

Instructor
Agent
Group
instructor : AGENT ∨GROUP

instructor = agent ∨ group

• The schema Instructor introduces the component instructor which can
be either an agent or a group

14

Team
Group
team : GROUP

team = group

• The schema Team introduces the component team which is a group

Context
Instructor
Team
Object
Extensions
registration, revision, platform, language : F1 #1
parentT, groupingT, categoryT, otherT : CONTEXTTY PES
contextActivities, statement : F1

statement = object \ (id, objectType, agent, group, definition)
parentT = parent
groupingT = grouping
categoryT = category
otherT = other
contextActivity = {ca : object \ (agent, group, objectType, objectTypeSub, substatement)}
contextActivityParent = (parentT, contextActivity)
contextActivityCategory = (categoryT, contextActivity)
contextActivityGrouping = (groupingT, contextActivity)
contextActivityOther = (otherT, contextActivity)
contextActivities = P1{contextActivityParent, contextActivityCategory,

contextActivityGrouping, contextActivityOther}
context = P1{registration, instructor, team, contextActivities, revision,

platform, language, statement, extensions}

• The schema Context introduces the component context which is the non-
empty powerset of registration, instructor, team, contextActivities, revision,
platform, language, statement and extensions

• The notation object \ agent represents the component object except for
its subcomponent agent

2.8 Timestamp and Stored Schema

Timestamp
timestamp : F1 #1

Stored
stored : F1 #1

15

• The schema Timestamp and stored introduce the components timestamp
and stored respectively. Each are non-empty, finite sets containing one
value

2.9 Attachments Schema

Attachments
display, description, attachment, attachments : F1

usageType, sha2, fileUrl, contentType : F1 #1
length : N

attachment = {usageType, display, contentType, length, sha2} ∪ P{description, fileUrl}
attachments = {a : attachment}

• The schema Attachments introduces the component attachments which
is a non-empty, finite set of the component attachment

• The component attachment is a non-empty, finite set of the components
usageType, display, contentType, length, sha2 with optionally description
and/or fileUrl

2.10 Statement and Statements Schema

Statement
Id
Actor
V erb
Object
Result
Context
T imestamp
Stored
Attachments
statement : STATEMENT

statement = {actor, verb, object, stored}∪
P{id, result, context, timestamp, attachments}

• The schema Statement introduces the component statement which con-
sists of the components actor, verb, object and stored and the optional
components id, result, context, timestamp, and/or attachments

• The schema Statement allows for subcomponent of statement to refer-
enced via the . (selection) operator

16

Statements
Statement
IsoToUnix
statements : F1

statements = {s : statement | ∀sn : si..sj • i ≤ n ≤ j
• convert(si.timestamp) ≤ convert(sj .timestamp)}

• The schema Statements introduces the component statements which is
a non-empty, finite set of the component statement which are in chrono-
logical order.

17

3 Operations, Primitives and Algorithms

The following sections introduce, define and explain Operations, Primitives and
Algorithms generally using the Terminology presented below. Operations are
the building blocks of Primitives whereas Primitives are the building blocks
of Algorithms. The definitions which follow are flexible enough to support
implementation across programing languages but have been inspired by the core
concepts found within Lisp and Z. The focus of these sections is to define the
properties of and interactions between Operations, Primitives and Algorithms in
a general way which doesn’t place unnecessary bounds on their range of possible
functionality with respect to processing xAPI data.

3.1 Terminology

Within this document, (s) indicates one or more.

3.1.1 Scalar

When working with xAPI data, Statements are written using JavaScript Ob-
ject Notation (JSON). This data model supports a few fundamental types as
described by JSON Schema. In order to speak about a singular valid JSON
value (string, number, boolean, null) generically, the term Scalar is used. To
talk about a scalar within a Z Schema, the following free and basic types are
introduced.

[STRING,NULL]
Boolean :== true | false
Scalar :== Boolean |STRING |NULL |Z

Arrays and Objects are also valid JSON values but will be referenced using the
terms Collection and Map ∨ KV respectively.

3.1.2 Collection

a sequence 〈...〉 of items c such that each c : N× V ⇒ (N, V)⇒ N 7→ V

C : Collection

C = 〈ci..cn..cj〉 ⇒ { i 7→ ci, n 7→ cn, j 7→ cj} • i ≤ n ≤ j ⇒ i ≺ n ≺ j ⇐⇒ i 6= n 6= j

And the following free type is introduced for collections

Collection :== emptyColl | append〈〈Collection× Scalar ∨ Collection ∨KV × N〉〉
emptyColl [the empty Collection 〈〉]
append [is a constructor and is inferred to be an injection]

KV [a free type introduced bellow]

append(emptyColl, c? , 0) = 〈c0〉 ⇒ { 0 7→ c? } [append adds c? to 〈〉 at N]

18

https://www.json.org/
https://www.json.org/
https://json-schema.org/understanding-json-schema/reference/type.html

3.1.3 Key

An identifier k paired with some value v to create an ordered pair (k, v). k can
take on any valid JSON value (Scalar, Collection, KV) except for the Scalar
null. The following free type is introduced for keys.

K ::= (Scalar \ NULL) |Collection |KV

3.1.4 Value

A value v is paired with an identifier k to create an ordered pair (k, v). v can
be any valid JSON value (Scalar, Collection, KV) The following free type is
introduced for values.

V ::= Scalar |Collection |KV

3.1.5 Map

Within the Z Notation Introduction section, Maps are introduced using the free
type KV .

KV ::= base | associate〈〈KV ×X × Y 〉〉

This definition is more accurately

KV ::= base | associate〈〈KV ×K × V 〉〉

which indicates the usage of Key k and Value v within associate. Using this
updated definition,

associate(base, k, v) = 〈〈(k, v)〉〉

such that a Map is a Collection of ordered pairs (kn, vn) and thus a Collection
of mappings

(kn, vn)⇒ kn 7→ vn

but Maps are special cases of Collections as kn is the unique identifier of vn
within a Map but the opposite is not true. In fact, keys are their own identifiers

id vn = kn
id kn 6= vn
id kn = kn

Given a Map M = 〈〈(ki, vi) .. (kn, vn) .. (kj , vj)〉〉 the following demonstrates the
uniqueness of Keys but the same is not true for all v within M

ki 6= kn 6= kj
vi = vn ∨ vi 6= vn vi = vj ∨ vi 6= vj vj = vn ∨ vj 6= vn

19

which can all be stated formally as

[K,V]
Map : K × V �→ KV

Map = 〈〈(ki, vi) .. (kn, vn) .. (kj , vj)〉〉 •
domMap = { ki .. kn .. kj}
ranMap = { vi .. vn .. vj}
first(ki, vi) 6= first(kn, vn) 6= first(kj , vj)∧
vi = vn ∨ vi 6= vn vi = vj ∨ vi 6= vj vj = vn ∨ vj 6= vn ∧
id vi = ki ∧ id vn = kn ∧ id vj = kj ∧
id ki = ki ∧ id kn = kn ∧ id kj = kj

Given that v can be a Map M , or a Collection C, Arbitrary nesting is allowed
within Maps but the properties of a Map hold at any depth.

M = 〈〈(ki, vi) .. (kn, 〈〈(kni, vni)〉〉) ..(kj , 〈vji .. 〈〈(kjn, vjn)〉〉 .. 〈vjji .. vjjn .. vjjj〉〉)〉〉

such that 〈〈(kni, vni)〉〉 and 〈〈(knj , vnj)〉〉 are both Maps and adhere to the con-
straints enumerated above.

3.1.6 Statement

Immutable Map conforming to the xAPI Specification as described in the xAPI
Formal Definition section of this document. The immutability of a Statement
s is demonstrated by the following which indicates that s was not altered when
passed to associate.

s! , s? : STATEMENT
k? : K
v? : V

s! = associate(s? , k? , v?) = s?⇒ (k? , v?) 6∈ s!⇒ s! = s?

Additionally, given the schema Statements the following is true for all Statement(s)

Statements
Keys : STRING
S : Collection

Keys = { id, actor, verb, object, result, context, attachments, timestamp, stored}
dom statement = K CKeys
S = 〈 statementi .. statementn .. statementj〉 •

atKey(statementi, id) 6= atKey(statementn, id) 6= atKey(statementj , id)⇒
idi 6= idn 6= idj ⇐⇒ statementi 6= statementn 6= statementj

Which confirms the constraints found in the schema Statement and adds an
additional constraint to Statements such that every unique Statement in a
Collection of Statements has a unique id.

20

https://github.com/adlnet/xAPI-Spec/blob/master/xAPI-Data.md#24-statement-properties

3.1.7 Algorithm State

Mutable Map state without any domain restriction such that

state? , state! : KV
k? : K
v? : V

associate(state? , k? , v?) = state! • (k, v) ∈ state!⇒ state? 6= state!

3.1.8 Option

Mutable Map opt which is used to alter the result of an Algorithm. The effect
of opt on an Algorithm will be discussed in the Algorithm Result section bellow.

21

4 Operation

An Operation is a function of arbitrary arguments and is defined using Z. For ex-
ample, Operations pulled directly from ”The Z Notation: A Reference Manual”
include

• first

• second

• succ

• min

• max

• count ≡ #

• a

• rev

• head

• last

• tail

• front

• �

• �

• a/

• disjoint

• partition

• ⊗

•]

• −∪

• items

22

4.1 Domain

The arguments passed to an Operation can be any of the following but the
definition of an Operation may limit the domain to a subset of the following

• Key(s)

• Value(s)

• Set(s)

• Collection(s)

• Bag(s)

• KV(s)

• Statement(s)

• Algorithm State

4.2 Range

The result of an Operation can be any of the following but the definition of an
Operation may limit this range to a subset of the following

• Key(s)

• Value(s)

• Set(s)

• Collection(s)

• Bag(s)

• KV(s)

• Statement(s)

• Algorithm State

23

5 Primitive

Primitives break the processing of xAPI data down into discrete units that can
be composed to create new analytical functions. Primitives allow users to ad-
dress the methodology of answering research questions as a sequence of generic
algorithmic steps which establish the necessary data transformations, aggre-
gations and calculations required to reach the solution in an implementation
agnostic way.

Within this document, they will be defined as a Collection of Operations
and/or Primitives where the output is piped from member to member. In
this section, on and pn can be used as to describe Primitive members but for
simplicity, only on will be used.

p〈i .. n .. j〉 = oi>>on>>oj

Within any given Primitive p, variables local to p and any global variables may
be passed as arguments to any member of p and there is no restriction on the
ordering of arguments with respect to the piping. In the following, q? is a global
variable whereas the rest are local.

x? , y? , z? , i! , n! , j! , p! : V alue
oi : V alue 7→ V alue
on : V alue× V alue 7→ V alue
oj , p : V alue× V alue× V alue 7→ V alue

i! = oi(x?)
n! = on(i! , y?)
j! = oj(z? , n! , q?)
p! = j!⇒ oj(z? , on(oi(x?), y?), q?)

In the rest of this document, the following notation is used to distinguish be-
tween the functionality of a Primitive and its composition. This notation should
be used when defining Primitives.

primitiveName : 7→

primitiveName = 〈primitiveNamei .. primitiveNamen .. primitiveNamej 〉

• The top line indicates the Primitive

– should be written using postfix notation within other schemas

– is at least a partial function from some input to some output

• The bottom line is an enumeration of the composing Operations and/or
Primitives and their order of execution

This means the definition of p from above can be updated as follows.

24

p : V alue× V alue× V alue 7→ V alue

p = 〈 oi, on, oj〉
p(x? , y? , z?) = oj(z? , on(oi(x?), y?), q?)

Additionally, this notation supports declaration of recursive iteration via the
presence of recur within a Primitive chain

primitiveNamei = 〈〈primitiveNameii , primitiveNamein 〉, recur 〉#

〈〈primitiveNameii , primitiveNamein 〉, recur 〉# ⇒
(primtiveNameii>>primitiveNamein)# •

∀n : i .. j • j = # ∧ i ≤ n ≤ j | ∃1pn : 7→ 7→ •
let pi == primtiveNameii>>primitiveNamein ⇒

pi = primitiveNamein(primitiveNameii)
pn == pi>>primtiveNameii>>primitiveNamein ⇒

pn = primitiveNamein(primitiveNameii(pi))
pj == pn>>primtiveNameii>>primitiveNamein ⇒

pj = primitiveNamein(primitiveNameii(pn))
pj = (primtiveNameii>>primitiveNamein)# • j = 3⇒

(primtiveNameii>>primitiveNamein)>>
(primtiveNameii>>primitiveNamein)>>
(primtiveNameii>>primitiveNamein)⇒

primitiveNamein(
primitiveNameii(

primitiveNamein(
primitiveNameii(pi))))

Here, pi was chosen to only be two primitives primtiveNameii ∧ primitiveNamein
for simplicity sake. The Primitive chain can be of arbitrary length. The number
of iterations is described using the count operation # . Above j = 3 was used
to demonstrate the piping between iterations but j is not exclusively = 3. Given
above, the term Primitive Chain can be defined as:

(primtiveNamei>>primitiveNamen>>primitiveNamej)
•

= 0⇒ primtiveNamei>>primitiveNamen>>primitiveNamej

where a Primitive chain iterated to the 0 is just the chain itself hence recursion
is not a requirement of, but is supported within, the definition of Primitives.

5.1 Domain

Any of the following dependent upon the Operations which compose the Prim-
itive

• Key(s)

• Value(s)

25

• Set(s)

• Collection(s)

• Bag(s)

• KV(s)

• Statement(s)

• Algorithm State

5.2 Range

Any of the following dependent upon the Domain and Functionality of the
Primitive

• Key(s)

• Value(s)

• Set(s)

• Collection(s)

• Bag(s)

• KV(s)

• Statement(s)

• Algorithm State

26

6 Algorithm

Given a Collection of statement(s) S〈a..b..c〉 and potentially option(s) opt and
potentially an existing Algorithm State state an Algorithm A executes as follows

1. call init

2. for each stmt ∈ S〈a..b..c〉

(a) relevant?

(b) accept?

(c) step

3. return result

with each process within A is enumerated as

(i n i t [s t a t e] body)
- i n i t s t a t e

(r e l e v a n t ? [s t a t e statement] body)
- i s the statement v a l i d f o r use in a lgor i thm ?

(accept ? [s t a t e statement] body)
- can the a lgor i thm cons id e r the cur rent statement ?

(s tep [s t a t e statement] body)
- p r o c e s s i n g per statement
- can r e s u l t in a modi f i ed s t a t e

(r e s u l t [s t a t e] body)
- re turn without opt ion (s) provided
- p o s s i b l y s e t s d e f a u l t opt ion (s)

(r e s u l t [s t a t e opt] body)
- re turn with c o n s i d e r a t i o n to opt ion (s)

• body is a collection of Primitive(s) which establishes the processing of
inputs → outputs

• state is a mutable Map of type KV and synonymous with Algorithm State

• statement is a single statement within the collection of statements passed
as input data to the Algorithm A

• opt are additional arguments passed to the algorithm A which impact the
return value of the algorithm and synonymous with Option

27

An Algorithm must be passed an Algorithm State and a Collection of State-
ment(s). Option is optional.

• Statement(s)

• Algorithm State

• Option(s)

An Algorithm will return an Algorithm State.

• Algorithm State

An Algorithm can be described via its components. A formal definition for an
Algorithm is presented at the end of this section. The following subsections go
into more detail about the components of an Algorithm.

Algorithm ::= Init>>Relevant? >>Accept? >>Step>>Result

6.1 Initialization

First process to run within an Algorithm which returns the Algorithm State for
the current iteration.

Init[KV]
state? , state! : KV
init : KV →→ KV

init = 〈body〉
state! = init(state?) • state! = state? ∨ state! 6= state?

such that some state! does not need to be related to its arguments state? but
state! could be derived from some seed state?. This functionality is dependent
upon the composition of body within init.

6.1.1 Domain

• Algorithm State

6.1.2 Range

• Algorithm State

6.2 Relevant?

First process that each stmt passes through ⇒ relevant?≺ accept?≺ step

28

Relevant? [KV, STATEMENT]
state? : KV
stmt? : STATEMENT
relevant? : KV × STATEMENT → Boolean

relevant? = 〈body〉
relevant? (state? , stmt?) = true ∨ false

resulting in an indication of whether the stmt is valid within algorithm A. The
criteria which determines validity of stmt within A is defined by the body of
relevant?

6.2.1 Domain

• Statement

• Algorithm State

6.2.2 Range

• Boolean

6.3 Accept?

Second process that each stmt passes through ⇒ relevant?≺ accept?≺ step

Accept? [KV, STATEMENT]
state? : KV
stmt? : STATEMENT
accept? : KV × STATEMENT → Boolean

accept? = 〈body〉
accept? (state? , stmt?) = true ∨ false

resulting in an indication of whether the stmt can be sent to step given the
current state. The criteria which determines usability of stmt given state is
defined by the body of accept?

6.3.1 Domain

• Statement

• Algorithm State

6.3.2 Range

• Scalar

29

6.4 Step

An Algorithm Step consists of a sequential composition of Primitive(s) where
the output of some function is passed as an argument to the next function both
within and across Primitives in body.

body = pi>>pn>>pj ⇒ oii>>oin>>oij >>oni>>onn>>onj >>oji>>ojn>>ojj

The selection and ordering of Operation(s) and Primitive(s) into an Algorith-
mic Step determines how the Algorithm State changes during iteration through
Statement(s) passed as input to the Algorithm.

P = 〈pi .. pn .. pj〉 • i ≤ n ≤ j ⇒ i ≺ n ≺ j ⇐⇒ i 6= n 6= j • pi>>pn>>pj
P ′ = 〈pi′ .. pn′ .. pj′〉 • i′ ≤ n′ ≤ j′ ⇒ i′ ≺ n′ ≺ j′ ⇐⇒ i′ 6= n′ 6= j′ • pi′ >>pn′ >>pj′
P ′′ = 〈px .. py .. pz〉 • x ≤ y ≤ z ⇒ x ≺ y ≺ z ⇐⇒ x 6= y 6= z • px>>py >>pz
P = P ′ ⇐⇒ i 7→ i′ ∧ n 7→ n′ ∧ j 7→ j′

P = P ′′ ⇐⇒ (i 7→ x ∧ n 7→ y ∧ j 7→ z) ∧ (pi ≡ px ∧ pn ≡ py ∧ pj ≡ pz)

step may or may not update the input Algorithm State given the current State-
ment from the Collection of Statement(s).

S : Collection
stmta, stmtb, stmtc : STATEMENT
state? , stepa! , stepb! , stepc! : KV
step : KV × STATEMENT →→ KV

S = 〈stmta..stmtb..stmtc〉 • a ≤ b ≤ c⇒ a ≺ b ≺ c ⇐⇒ a 6= b 6= c
stepa! = step(state? , stmta) • stepa! = state? ∨ stepa! 6= state?
stepb! = step(stepa! , stmtb) • stepb! = stepa! ∨ stepb! 6= stepa!
stepc! = step(stepb! , stmtc) • stepc! = stepb! ∨ stepc! 6= stepb!

In general, this allows step to be defined as

Step[KV, STATEMENT]
state? , state! : KV
stmt? : STATEMENT
step : KV × STATEMENT →→ KV

step = 〈body〉
state! = step (state? , stmt?) = state? ∨ state! 6= state?

A change of state?→ state! • state! 6= state? can be predicted to occur given

• The definition of individual Operations which constitute a Primitive

• The ordering of Operations within a Primitive

• The Primitive(s) chosen for inclusion within the body of step

• The ordering of Primitive(s) within the body of step

• The key value pair(s) in both Algorithm State and the current Statement

• The ordering of Statement(s)

30

6.4.1 Domain

• Statement

• Algorithm State

6.4.2 Range

• Algorithm State

6.5 Result

Last process to run within an Algorithm which returns the Algorithm State
state when all s ∈ S have been processed by step

relevant?≺ accept?≺ step ≺ result ≺ relevant? ⇐⇒ S 6= ∅
relevant?≺ accept?≺ step ≺ result ⇐⇒ S = ∅

and does so without preventing subsequent calls of A

Result[KV,KV]
result! , state? , opt? : KV
result : KV ×KV →→ KV

result = 〈body〉
result! = result(state? , opt?) = state? ∨ state! 6= state?

such that if at some future point j within the timeline i .. n .. j

S(tn) = ∅ [S is empty at tn]

S(tj) 6= ∅ [S is not empty at tj]

S(tn−i) [stmts(s) added to S between ti and tn]

S(tj−n) [stmts(s) added to S between tn and tj]

S(tj−i) = S(tn−i) ∪ S(tj−n) [stmts(s) added to S between ti and tj]

Algorithm A can pick up from a previous staten without losing track of its own
history.

staten−i = A(statei, S(tn−i))
staten−1 = A(staten−2, S(tn−1))
staten = A(staten−1, S(tn))
statej−n = A(staten, S(tj−n))
statej = A(statei, S(tj−i))

staten = staten−1 ⇐⇒ S(tn) = ∅ ∧ S(tn−1) 6= ∅
statej = statej−n ⇐⇒ staten−i = staten = staten−1

Which makes A capable of taking in some S〈i..n..j..∞〉 as not all s ∈ S〈i..∞〉
have to be considered at once. In other words, the input data does not need to

31

persist across the history of A, only the effect of s on state must be persisted.
Additionally, the effect of opt is determined by the body within result such that

A(staten, S(tj−n), opt)
≡ A(statei S(tj−i))
≡ A(statei, S(tj−i), opt)
≡ A(staten, S(tj−n))

implying that the effect of opt doesn’t prevent backwards compatibility of state.

6.5.1 Domain

• Algorithm State

• Option(s)

6.5.2 Range

• Algorithm State

6.6 Algorithm Formal Definition

In previous sections, A was used to indicate calling an Algorithm. In the rest
of this document, that notation will be replaced with algorithm . This new
notation is defined using the definitions of Algorithm Components presented
above. The previous definition of an Algorithm

Algorithm ::= Init>>Relevant? >>Accept? >>Step>>Result

can be refined using the Operation recur and Primitive algorithmIter (defined
in following subsections) to illustrate how an Algorithm processes a Collection
of Statement(s).

Algorithm[KV,Collection,KV]
AlgorithmIter, Recur, Init, Result
opt? , state? , state! : KV
S? : Collection • ∀s?∈ S? | s? : STATEMENT
algorithm : KV × Collection×KV →→ KV

algorithm = 〈 init , 〈 algorithmIter , recur 〉#S?, result 〉
state! = algorithm(state? , S? , opt?) •

let init! == init(state?) •
∀sn ∈ S? | sn : STATEMENT, n : N • i ≤ n ≤ j •

∃1staten | staten : KV •
let S?n = tail(S?)n−i

statei = algorithmIter(init! , S?n)⇒ S?n = S? ⇐⇒ n = i
staten = recur(statei, S?n , algorithmIter)j−1 ⇐⇒ n 6= i ∧ n 6= j
statej = recur(staten, ({j − 1, j} � S?), algorithmIter) ⇐⇒ n = j
statej+1 = statej ⇒ recur(statej , (j � S?), algorithmIter) ⇐⇒ n = j + 1

= result(statej , opt?)

32

Within the schema above, the following notation is intended to show that
algorithm is a Primitive ⇒ Collection of Primitives and/or Operations.

〈 init , 〈 algorithmIter , recur 〉#S?, result 〉

Within that notation, the following notation is intended to represent the itera-
tion through the Statement(s) via tail recursion.

〈 algorithmIter , recur 〉#S?

which implies that each Statement is passed to algorithmIter and the result
is then passed on to the next iteration of the loop. The completion of this loop
is the prerequisites of result

6.6.1 Recur

The following schema introduces the Operation recur which expects an accu-
mulator (KV), a Collection of Value(s) (V) being iterated over and a function
(7→) which will be called as the result of recur. This Operation has been
written to be as general purpose as possible and represents the ability to perform
tail recursion. Given this intention, recur must only ever be the last Operation
within a Primitive

pi .. j : seq1 • ∀o ∈ p | o : 7→

pi .. j = 〈 ∀n : N | i ≤ n ≤ j ∧ on ∈ pi .. j •
∃1on • on 6= recur ∨ on = recur ⇐⇒ n = j〉 ⇒

front(pi .. j) � recur = 〈〉

and results in a call to the passed in function where the accumulator ack? and
the Collection (minus the first member) are passed as arguments to fn?. If
this would result in the empty Collection (〈〉) being passed to fn?, instead the
accumulator ack? is returned.

Recur[KV,Collection, (7→)]
ack? : KV
S? : Collection
fn? : (7→)
recur : KV × Collection× (7→)↔ (KV × Collection 7→)

recur(ack? , S? , fn?) = fn? (ack? , tail(S?)) ⇐⇒ tail(S?) 6= 〈〉
recur(ack? , S? , fn?) = first(ack? , tail(S?)) ⇐⇒ tail(S?) = 〈〉

In the context of Algorithms,

ack? = AlgorithmState
S? = CollectionofStatement(s)
fn? = algorithmIter

33

https://cs.stackexchange.com/questions/6230/what-is-tail-recursion

6.6.2 Algorithm Iter

The following schema introduce the Primitive algorithmIter which demon-
strates the life cycle of a single statement as its passed through the components
of an Algorithm.

AlgorithmIter[KV,Collection]
Relevant? , Accept? , Step
state? , state! : KV
S? : Collection
s? : STATEMENT
algorithmIter : KV × STATEMENT →→ KV

algorithmIter = 〈 relevant? , accept? , step 〉
s? = head(S?)
state! = algorithmIter(state? , s?) •

let relevant! == relevant? (state? , s?)
accept! == accept? (state? , s?)
step! == step(state? , s?)

= (state? ⇐⇒ relevant! = false ∨ accept! = false)∨
(step! ⇐⇒ relevant! = true ∧ accept! = true)

If a statement if both relevant and acceptable, state! will be the result of step.
Otherwise, the passed in state is returned ⇒ step! = state?.

34

7 Foundational Operations

The Operations in this section use the Operations pulled from the Z Reference
Manual (section 1,4) within their own definitions. They are defined as Oper-
ations opposed to Primitives because they represent core functionality needed
in the context of processing xAPI data given the definition of an Algorithm
above. As such, these Operations are added to the global dictionary of sym-
bols usable, without a direct reference to the components schema, within the
definition of Operations and Primitives throughout the rest of this document.
In general, Operations are intended to be simple, and should not contain any
recursive calls. They are building blocks which are used across Primitives of
varying functionality. When defining an Operation not already in the set of
Foundational Operations defined here, its schema MUST be referenced at the
top of all Schemas which utilize the new Operation.

7.1 Collections

Operations which expect a Collection X = 〈xi..xn..xj〉

7.1.1 Array?

The operation array? will return a boolean which indicates if the passed in
argument is a Collection

Array? [V]
coll? : V
bol! : Boolean
array? : V → Boolean

bol! = array? (coll?) • bol! = true ⇐⇒ coll? : Collection⇒ V \ (Scalar,KV)

where V \ (Scalar,KV) is used to indicate that coll? is of type V

V ::= Scalar |Collection |KV

but in order for bol! = true, coll? must not be of type Scalar ∨KV such that

X = 〈x0, x1, x2, x3, x4〉
x0 = 0

x1 = foo

x2 = 〈baz, qux〉
x3 = 〈〈abc 7→ 123, def 7→ 456〉〉
x4 = 〈〈〈ghi 7→ 789, jkl 7→ 101112〉〉, 〈〈ghi 7→ 131415, jkl 7→ 161718〉〉〉

array? (X) = true [collection by definition]

array? (x2) = true [collection of 0 7→ baz, 1 7→ qux]

35

array? (x4) = true [collection of maps]

array? (x0) = false [Scalar]

array? (x1) = false [String]

array? (x3) = false [Map]

7.1.2 Append

The operation append will return a Collection with a Value added at a specified
numeric Index.

Append[Collection, V,N]
coll? , coll! : Collection
v? : V
idx? : N
append : Collection× V × N�→ Collection

idx? = 1
coll! = append(coll? , v? , idx?) •

let coll′ == front({ i : N | i ∈ 0 .. idx? } � coll?)a v?
coll′′ == { j : N | j ∈ idx? ..# coll? } � coll?

= coll′ a coll′′ ⇒
(front(coll′)a v?acoll′′)∧
(v? 7→ idx?∈ coll!)∧
(# coll! = # coll? +1)

append results in the composition of coll′ and coll′′ such that

coll! = coll′ a coll′′ ∧ idx? 7→ v?∈ coll!

• coll′ is the items in coll? up to and including idx? but the value at idx?
is replaced with v? such that idx? 7→ coll?idx? 6∈ coll′

• coll′′ is the items in coll? from idx? to # coll?⇒ coll?idx? ∈ coll′′

The following example illustrates these properties.

X = 〈x0, x1, x2〉
x0 = 0

x1 = foo

x2 = 〈a, b, c〉
v? = bar

append(X, v? , 0) = 〈bar, 0, foo, 〈a, b, c〉〉
append(X, v? , 1) = 〈0, bar, foo, 〈a, b, c〉〉

36

append(X, v? , 2) = 〈0, foo, bar, 〈a, b, c〉〉
append(X, v? , 3) = 〈0, foo, 〈a, b, c〉, bar〉
append(X, v? , 4) = append(X, v? , 3) ⇐⇒ 3 6∈ domX

7.1.3 Remove

The inverse of the append Operations.

remove(coll, idx) =∼ append(coll, idx)

The operation remove will return a Collection minus the Value removed from
the specified Numeric Index

Remove[Collection,N]
coll? , coll! : Collection
idx? : N
remove : Collection× N→→ Collection

idx? = 1
coll! = remove(coll? , idx?) •

let coll′ == front({ i : N | i ∈ 0 .. idx? } � coll?)
coll′′ == tail({ j : N | j ∈ idx? ..# coll? } � coll?)

= coll′ a coll′′ ⇒
(coll?idx? 6∈ coll′)∧
(coll?idx? 6∈ coll′′)∧
(# coll! = # coll?−1)

such that

X = 〈x0, x1, x2〉
x0 = 0

x1 = foo

x2 = baz

remove(X, 0) = 〈foo, baz〉 [0 was removed from X]

remove(X, 1) = 〈0, baz〉 [foo was removed from X]

remove(X, 2) = 〈0, foo〉 [baz was removed from X]

remove(X, 3) = 〈0, foo, baz〉 = X [nothing at 3, X unaltered]

7.1.4 At Index

The operation atIndex will return the Value at a specified numeric index within
a Collection or an empty Collection if there is no value at the specified index.

37

AtIndex[Collection,N]
idx? : N
coll? : Collection
atIndex : Collection× N→→ V

idx? = 1
coll! = atIndex(coll? , idx?) = (head (idx? � coll?)) ⇐⇒ idx?∈ coll?
coll! = atIndex(coll? , idx?) = 〈〉 ⇐⇒ idx? 6∈ coll?

Given the definition of the Collection and V free types

Collection :== emptyColl | append〈〈Collection× Scalar ∨ Collection ∨KV × N〉〉
V ::= Scalar |Collection |KV

The collection member coll?idx? : V is implied from append accepting the ar-
gument of type Scalar ∨ Collection ∨ KV ≡ V which means each Collection
member is of type V . Given that extraction (�) returns a Collection,

seqX : Collection

� : PN1 × seqX → seqX

in order for atIndex to return the collection member without altering its type,
the first member of atIdx′ must be returned, not atIdx′ itself.

atIdx′ : Collection
coll! , coll?idx? : V

atIdx′ = (idx? � coll?)⇒ 〈coll?idx? 〉
coll! = head(atIdx′) = coll?idx?

The head call is made possible by restricting idx? to be a single numeric value.

idx? , idx′ : N
idx? = 1 • (idx? � coll?) = 〈coll?idx? 〉 •

(head(idx? � coll?)) = coll?idx? [expected return given idx?]

idx′ ≥ 2 • (idx′ � coll?) = 〈coll?idx′i .. coll?idx′j 〉 •

(head(idx′ � coll?)) = coll?idx′i [unexpected return given idx′]

Additionally, if the provided idx? 6∈ coll? then an empty Collection will be re-
turned given that head must be passed a non-empty Collection.

head : seq1X → X

idx? 6∈ coll?⇒ (idx? � coll?) = 〈〉 ¬ seq1

The properties of atIndex are illustrated in the following examples.

X = 〈x0, x1, x2〉

38

x0 = 0

x1 = foo

x2 = 〈a, b, c〉
atIndex(X, 0) = 0 [head (〈x0 〉)]
atIndex(X, 1) = foo [head (〈x1 〉)]
atIndex(X, 2) = 〈a, b, c〉 [head (〈x2 〉)]
atIndex(X, 3) = 〈〉 [3 6∈ X ⇒ x3 6∈ X]

7.1.5 Update

The operation update will return a Collection coll! which is the same as the
input Collection coll? except for at index idx?. The existing member coll?idx?
is replaced by the provided Value v? at idx? in coll! such that

idx? 7→ v?∈ coll! ∧ idx? 7→ coll?idx? 6∈ coll!

which is equivalent to remove>>append

update(coll? , v? , idx?) ≡ append(remove(coll? , idx?), v? , idx?)

The functionality of update is further explained in the following schema.

Update[Collection, V,N]
idx? : N
coll? , coll! : Collection
v? : V
update : Collection× V × N�→ Collection

1 = # idx?
coll! = update(coll? , v? , idx?) •

let coll′ == { i : N | i ∈ 0 .. idx? } � coll?
coll′′ == head(coll′) a v?
coll′′′ == { j : N | j ∈ idx? +1 ..# coll? } � coll?

= coll′′ a coll′′ ⇒
(append(remove(coll′, idx?), v? , idx?)a coll′′)∧
(v? 7→ idx?∈ coll!)∧
(# coll! = # coll?)∧

The value which previously existed at idx?∈ coll? is replaced with v? to result
in coll!

• coll′ is the items in coll? up to and including idx?

• coll′′ is the items in coll? except the item at idx? has been replaced with
v?

39

• coll′′′ is the items in coll? from idx? +1 to # coll?⇒ coll?idx? 6∈ coll′′

The following example illustrates these properties.

X = 〈x0, x1, x2〉
x0 = 0

x1 = foo

x2 = 〈a, b, c〉
v? = bar

update(X, v? , 0) = 〈bar, foo, 〈a, b, c〉〉
update(X, v? , 1) = 〈0, bar, 〈a, b, c〉〉
update(X, v? , 2) = 〈0, foo, bar〉
update(X, v? , 3) = 〈0, foo, 〈a, b, c〉, bar〉
update(X, v? , 4) = append(X, v? , 3) = update(X, v? , 3) ⇐⇒ 3 6∈ domX

7.2 Key Value Pairs

Operations which expect a Map M = 〈〈kivki ..knvkn ..kjvkj 〉〉

7.2.1 Map?

The operation map? will return a boolean which indicates if the passed in ar-
gument is a KV

Map? [V]
m? : V
bol! : Boolean
map? : V → Boolean

bol! = map? (m?) • bol! = true ⇐⇒ m? : KV ⇒ V \ (Scalar, Collection)

where V \ (Scalar, Collection) is used to indicate that m? is of type V

V ::= Scalar |Collection |KV

but in order for bol! = true, m? must not be of type Scalar ∨ Collection such
that

X = 〈〈x0, x1, x2, x3, x4〉〉
x0 = 0

x1 = foo

x2 = 〈baz, qux〉
x3 = 〈〈abc 7→ 123, def 7→ 456〉〉

40

x4 = 〈〈〈ghi 7→ 789, jkl 7→ 101112〉〉, 〈〈ghi 7→ 131415, jkl 7→ 161718〉〉〉
map? (X) = true [KV by definition]

map? (x3) = true [KV]

map? (x2) = false [Collection]

map? (x4) = false [Collection of maps]

map? (x0) = false [Scalar]

map? (x1) = false [String]

7.2.2 Associate

The operation associate establishes a relationship between k? and v? at the top
level of m!.

Associate[KV,K, V]
m? ,m! ,m′ : KV
k? : K
v? : V
associate : KV ×K × V �→ KV

m! = associate(m? , k? , v?) •
let m′ == m? −C k?⇒

(dom m′ = dom (m? \ k?))∧
(m? \m′ = k? ⇐⇒ k?∈ m?)∧
(m? \m′ = ∅ ⇐⇒ k? 6∈ m?⇒ m? = m′)

= 〈〈k? 7→ v? 〉〉 ∪ m′

This implies that any existing mapping at k?∈ m? will be overwritten by
associate but an existing mapping is not a precondition.

(k? ,m?k?) ∈ m? ∨ (k? ,m?k?) 6∈ m?
(k? ,m?k?) 6∈ m!
(k? , v?) ∈ m!

m! = associate(m? , k? , v?)

associate does not alter any other mappings within m? and this property is
illustrated by the definition of local variable m′

m′ : KV |m′ = m?−C k?⇒ m′ C (m? \ k?)

dom m? = { ki : K | 0 ..#m? • ki ∈ m? ∧ 0 ≤ i ≤ #m? }
dom m′ = { k′i : K | 0 ..#m′ • k′i ∈ m? ∧ k′i 6= k? ∧ 0 ≤ i ≤ #m′}
dom m′ = dom m? ⇐⇒ k? 6∈ m?⇒ ∀ki ∈ m? | ki 6= k?
#m′ = #m? ⇐⇒ k? 6∈ m?
#m′ = #m?−1 ⇐⇒ k?∈ m?

41

and its usage within the definition of associate.

m! = m? ∪ 〈〈 k? 7→ v? 〉〉 ⇒ k? 6∈ m?
m! = m′ ∪ 〈〈 k? 7→ v? 〉〉 ⇒ m′ 6= m? ∧ k?∈ m?

The following examples demonstrate the intended functionality of associate.

M = 〈〈k0vk0 , k1vk1〉〉
k0 = abc ∧ vk0 = 123 [k0vk0 = abc 7→ 123]

k1 = def ∧ vk1 = xyz 7→ 456 [k1vk1 = def 7→ xyz 7→ 456]

associate(M, baz, foo) = 〈〈abc 7→ 123, def 7→ xyz 7→ 456, baz 7→ foo〉〉
associate(M,abc, 321) = 〈〈abc 7→ 321, def 7→ xyz 7→ 456〉〉

7.2.3 Dissociate

The operation dissociate will remove some k 7→ v from KV given k ∈ KV

Dissociate[KV,K]
m? ,m! : KV
k? : K
dissociate : KV ×K →→ KV

m! = dissociate(m? , k?) • m! = m?−C k?⇒
(dom m! = dom (m? \ k?))∧
(m? \m! = k? ⇐⇒ k?∈ m?)∧
(m? \m! = ∅ ⇐⇒ k? 6∈ m?⇒ m? = m!)∧
((k? ,m?k?) 6∈ m!)

such that every mapping in m? is also in m! except for k? 7→ m?k?.

M = 〈〈k0vk0 , k1vk1〉〉
k0 = abc ∧ vk0 = 123 [k0vk0 = abc 7→ 123]

k1 = def ∧ vk1 = xyz 7→ 456 [k1vk1 = def 7→ xyz 7→ 456]

dissociate(M,abc) = 〈〈def 7→ xyz 7→ 456〉〉
dissociate(M,def) = 〈〈abc 7→ 123〉〉
dissociate(M,xyz) = M [xyz 6∈M]

7.2.4 At Key

The operation atKey will return the Value v at some specified Key k.

42

AtKey[KV,K]
m? : KV
v! : V
k? : K
atKey : KV ×K →→ V

v! = atKey(m? , k?) •
let coll == ((seqm?) � (k? ,m?k?))⇒ 〈(k? ,m?k?)〉 ⇐⇒ k?∈ domm?

= (second(head(coll)) ⇐⇒ k? 7→ m?k? ∈ coll)∨
(∅ ⇐⇒ k? 6∈ domm?)

In the schema above, coll is the result of filtering for (k? ,m?k?) within seqm?.
If the mapping was in the original m?, it will also be in the sequence of mappings.
This means we can filter over the sequence to look for the mapping and if found,
it is returned as 〈(k? ,m?k?)〉. To return the mapping itself, head(coll) is used
to extract the mapping such that the value mapped to k? can be returned.

v! = atKey(m? , k?) = second(head(coll)) = m?k? • m?k? : V ⇐⇒ k?∈ domm?

The following examples demonstrate the properties of atKey

M = 〈〈k0vk0 , k1vk1〉〉
k0 = abc ∧ vk0 = 123 [k0vk0 = abc 7→ 123]

k1 = def ∧ vk1 = xyz 7→ 456 [k1vk1 = def 7→ xyz 7→ 456]

atKey(M,abc) = 123

atKey(M,def) = xyz 7→ 456

atKey(M,foo) = ∅

7.3 Utility

Operations which are useful in many Statement processing contexts.

7.3.1 Map

The map operation takes in a function fn?, Collection coll? and additional
Arguments args? (as necessary) and returns a modified Collection coll! with
members fn!n. The ordering of coll? is maintained within coll!

43

Map[(7→), Collection, V]
fn? : (7→)
args? : V
coll? , coll! : Collection
map : (7→)× Collection× V →→ Collection

coll! = map(fn? , coll? , args?) •
〈 ∀n : i .. j ∈ coll? | i ≤ n ≤ j ∧ j = # coll? •

∃1 fn!n : V | fn!n =
(fn? (coll?n , args?) ⇐⇒ args? 6= ∅)∨
(fn? (coll?n) ⇐⇒ args? = ∅)〉 ⇒ fn!iafn!nafn!j

Above, fn!n is introduced to handle the case where fn? only requires a single
argument. Additional arguments may be necessary but if they are not (args? =
∅) then only coll?n is passed to fn?.

X = 〈1, 2, 3〉
map (succ,X) = 〈2, 3, 4〉 [increment each member of X]

map (+, X, 2) = 〈3, 4, 5〉 [add 2 to each member of X]

7.3.2 Iso To Unix Epoch

The isoToUnix operation converts an ISO 8601 Timestamp (see the xAPI Spec-
ification) to the number of seconds that have elapsed since January 1, 1970

IsoToUnix
T imestamp
seconds! : N
isoToUnix : F1 → N

seconds! = isoToUnix(timestamp)

ts = 2015− 11− 18T12 : 17 : 00 + 00 : 00 ≡ 2015− 11− 18T12 : 17 : 00Z

isoToUnixEpoch(ts) = 1447849020 [ISO 8601 → Epoch time]

7.3.3 Timeunit To Number of Seconds

The operation toSeconds will return the number of seconds corresponding to
the input Timeunit

T imeunit ::= second |minute |hour | day |week |month | year

such that the following schema defines toSeconds

44

https://github.com/adlnet/xAPI-Spec/blob/master/xAPI-Data.md#timestamps
https://github.com/adlnet/xAPI-Spec/blob/master/xAPI-Data.md#timestamps

ToSeconds[Timeunit]
t? : Timeunit
toSeconds : Timeunit 7→ N

toSeconds(t?) = 1 ⇐⇒ t? = second
toSeconds(t?) = 60 ⇐⇒ t? = minute
toSeconds(t?) = 3600 ⇐⇒ t? = hour
toSeconds(t?) = 86400 ⇐⇒ t? = day
toSeconds(t?) = 604800 ⇐⇒ t? = week
toSeconds(t?) = 2629743 ⇐⇒ t? = month
toSeconds(t?) = 31556926 ⇐⇒ t? = year

7.4 Rate Of

The Operation rateOf calculates the number of times something occurs within
an interval of time given a unit of time.

rateOf(nOccurances, start, end, unit)

Where the output translates to: the rate of occurrence per unit within interval

• nOccurances is the number of times something happened and should be
an Integer (called nO? bellow)

• start is an ISO 8601 timestamp which serves as the first timestamp within
the interval

• end is an ISO 8601 timestamp which servers as the last timestamp within
the interval

• unit is a String Enum representing the unit of time

This can be seen in the definition of rateOf bellow.

RateOf [N, T IMESTAMP, TIMESTAMP, TIMEUNIT]
nO? : N
rate! : Z
start? , end? : TIMESTAMP
unit? : TIMEUNIT
rateOf : N× TIMESTAMP × TIMESTAMP × TIMEUNIT → Z

rate! = rateOf(nO? , start? , end? , unit?) •
let interval == isoToUnix(end)− isoToUnix(start)

unitS == toSeconds(unit?)
= nO?÷(interval ÷ units)

45

The only other functionality required by rateOf is supplied via basic arithmetic

start = 2015− 11− 18T12 : 17 : 00Z

end = 2015− 11− 18T14 : 17 : 00Z

unit = second

nO? = 10

startN = isoToUnix(start) = 1447849020

endN = isoToUnix(end) = 1447856220

interval = endN − StartN = 7200

unitN = toSeconds(unit) = 60

0.001389 = rateOf(nO? , start, end, unit)⇒ 10÷ (7200÷ 60)

5 = rateOf(nO? , start, end, hour)⇒ 10÷ (7200÷ 3600)

46

8 Common Primitives

There will be many Primitives used within Algorithm definitions in DAVE but
navigation into a nested Collection or KV is most likely to be used across
nearly all Algorithm definitions. In the following section, helper Operations are
introduced for navigation into and back out of a nested Value. These Operations
are then used to define the common Primitives centered around traversal of
nested data structures ie. xAPI Statements and Algorithm State.

8.1 Traversal Operations

Get[V,Collection]
in? , v! : V
id? : Collection
get : V × Collection→→ V

v! = get(in? , id?) •
= (atIndex(in? , head(id?)) ⇐⇒ (array? (in?) = true) ∧ (head(id?) ∈ N))∨

(atKey(in? , head(id?)) ⇐⇒ (array? (in?) = false) ∧ (map? (in?) = true))

• retrieval of a V located at id? within in? where in? can be a Collection
or KV

Merge[(V, V), Collection]
parent? , child? , parent! : V
at? : Collection
merge : (V × V)× Collection�→ V

parent! = merge((parent? , child?), at?) •
= (associate(parent? , head(at?), child?)

⇐⇒ map? (parent?) = true)∨
(update(parent? , child? , head(at?))
⇐⇒ (array? (parent?) = true) ∧ (head(at?) ∈ N))

• Updating of parent? to include child? at location indicated by head(at?)

Conj[V, V]
parent? , data? : V
conj! : Collection
conj : V × V �→ Collection

conj! = conj(parent? , data?) •
let j == first(last(parent?))

parent?coll == append(〈〉, parent? , 0)
= (append(parent? , data? , (j + 1)) ⇐⇒ array? (parent?) = true)∨

(append(parent?coll , data? , (j + 1)) ⇐⇒ array(parent?) = false)

47

• conj! is a collection with data? at the last index conj!j = data?.

8.2 Traversal Primitives

The helper Operations defined above are used to describe the traversal of a het-
erogeneous nested Value. In the following subsections, examples which demon-
strate the functionality of Primitives will be passed X as in?.

X = 〈x0, x1, x2〉
x0 = true

x1 = 〈a, b, c〉
x2 = 〈〈foo 7→ 〈〈bar 7→ buz, x 7→ y, z 7→ 〈3, 2, 1〉〉〉〉〉

fn! = fn(X〈path?i ..path?j−1〉, v?) •
∀X〈path?i ..path?j−1〉 ∧ v? | fn! = ZZZ [always return ZZZ]

8.2.1 Get In

Collection and KV have different Fundamental Operations for navigation into,
value extraction from and application of updates to. Navigation into an arbi-
trary Value without concern for its type is a useful tool to have and has been
defined as the Primitive getIn.

GetIn[V,Collection]
Get,Recur
in? , atPath! : V
path? : Collection
getIn : V × Collection→→ V

getIn = 〈get , recur 〉# path?−1

atPath! = getIn(in? , path?) •
∀n : i .. j − 1 • j = first(last(path?))⇒ first(j, path?j) | ∃ downn •

let path?n == tail(path?)n−i

downi == get(in? , path?n)⇒
atIndex(in? , head(path?))∨
atKey(in? , head(path?)) ⇐⇒ n = i

downn == recur(downi, path?n , get)j−1

downj−1 == get(downn, path?n) ⇐⇒ n = j − 2

atPath! = downj = get(downj−1, path?n) •
path?n≡ (path? � j)⇒
〈j 7→ atIndex(path? , j)〉 ⇐⇒ n = j − 1

The following examples demonstrate the functionality of the Primitive getIn

getIn(X, 〈1, 1〉) = b

48

getIn(X, 〈0〉) = true

getIn(X, 〈2, foo, z, 0〉) = 3

Additionally, the propagation of an update, starting at some depth within a
passed in Value and bubbling up to the top level, such that the update is only
applied to values along a specified path as necessary, is also a useful tool to
have. The following sections introduce Primitives which address performing
these types of updates and ends with a summary of the functional steps de-
scribed in the sections below. replaceAt is introduced first and serves as a
point of comparison when describing the more abstract Primitives backProp
and walkBack.

8.2.2 Replace At

The schema ReplaceAt uses the helper Operation merge to apply updates while
climbing up from some arbitrary depth.

ReplaceAt[V,Collection, V]
GetIn,Merge
in? , with? , out! : V
path? : Collection
replaceAt : V × Collection× V �→ V

replaceAt = 〈〈getIn , merge 〉, recur 〉# path?−1

out! = replaceAt(in? , path? , with?) •
∀n : i .. j − 1 • (i = first(head(path?))) ∧ (j = first(last(path?))) | ∃ parentn •

let path?n == tail(path?)n−i

parentn = recur(parentn−1, path?n , get)j−1 ⇒
let parenti == getIn(in? , path?n) ⇐⇒ n = i

parenti+1 == getIn(parenti, path?n) ⇐⇒ n = i+ 1
parentj−1 == getIn(parentj−2, path?n) ⇐⇒ n = j − 1

parentj = getIn(parentj−1, (path? � j))

∀z : p .. q • (p = j − 1) ∧ (q = i+ 1)⇒
((z = p ⇐⇒ n = j − 1) ∧ (z = q ⇐⇒ n = i+ 1)) | ∃ childz •

let path?rev == rev(path?)
path?z == tail(path?rev)p−z+1

childz = recur((parentn, childn+1), path?z ,merge)
let childp == merge((parentn, with?), path?z) ⇐⇒ z = p⇒ n = j − 1

childp+1 == merge((parentn, childp), path?z) ⇐⇒ n = j − 2 ∧ p = j − 1
childq == merge((parentn, childq+1), path?z) ⇐⇒ z = q ⇒ n = i+ 1

out! = merge((in? , childq), path?n) ≡ merge((in? , childq), (path? � i)) ⇐⇒ (n = i = q − 1)

• The range of indices i .. j−1 is used to describe navigation into some Value
given path?

49

– Used to reference preceding level of depth

– keeps track of parent from previous steps

• The range of indices p .. q is used to describe navigation up from target
depth indicated by path?

– Used to reference current level of depth

– keeps track of child after the update has been applied

• The propagation of the update starts with childp

– with? is added to parentj−1 at get (path? , 〈 j 〉)
– parent nodes need to be notified of the change within their children

The following examples demonstrate the functionality of the Primitive replaceAt

replaceAt(X, 〈2, foo, q〉, fn!) = 〈x0, x1, 〈〈foo 7→ 〈〈bar 7→ buz, x 7→ y, q 7→ ZZZ〉〉〉〉〉
replaceAt(X, 〈2, foo, x〉, fn!) = 〈x0, x1, 〈〈foo 7→ 〈〈bar 7→ buz, x 7→ ZZZ〉〉〉〉〉

This Primitive can be made more general purpose by replacing merge with a
placeholder fn? representing a passed in Operation or Primitive.

8.2.3 Back Prop

Being able to pass a function as an argument allows for, in this context, the
arbitrary handling of how update(s) are applied at each level of nesting. The
arbitrary fn? should expect a (Parent, Child) tuple and a Collection of indices
as arguments and return a potentially modified version of the parent.

50

BackProp [V,Collection, V, (7→)]
GetIn
in? , fnSeed? , out! : V
path? : Collection
fn? : (7→)
backProp : V × Collection× V × (7→)�→ V

backProp = 〈〈getIn , fn? 〉, recur 〉# path?−1

out! = backProp (in? , path? , fnSeed? , fn?) •
∀n : i .. j − 1 • (i = first(head(path?))) ∧ (j = first(last(path?))) | ∃ parentn •

let path?n == tail(path?)n−i

parentn = recur(parentn−1, path?n , get)j−1 ⇒
let parenti == getIn(in? , path?n) ⇐⇒ n = i

parenti+1 == getIn(parenti, path?n) ⇐⇒ n = i+ 1
parentj−1 == getIn(parentj−2, path?n) ⇐⇒ n = j − 1

parentj = getIn(parentj−1, (path? � j))

∀z : p .. q • (p = j − 1) ∧ (q = i+ 1)⇒
((z = p ⇐⇒ n = j − 1) ∧ (z = q ⇐⇒ n = i+ 1)) | ∃ childz •

let path?rev == rev(path?)
path?z == tail(path?rev)p−z+1

childz = recur((parentn, childn+1), path?z , fn?)
let childp == fn? ((parentn, fnSeed?), path?z) ⇐⇒ z = p⇒ n = j − 1

childp+1 == fn? ((parentn, childp), path?z) ⇐⇒ n = j − 2 ∧ p = j − 1
childq == fn? ((parentn, childq+1), path?z) ⇐⇒ z = q ⇒ n = i+ 1

out! = fn? ((in? , childq), path?n) ≡ fn? ((in? , childq), (path? � i)) ⇐⇒ (n = i = q − 1)

The schema ReplaceAt was introduced before BackProp so the process under-
lying both could be explicitly demonstrated and defined. The hope is that this
made the introduction of the more abstract Primitive backProp easier to follow.
A quick comparison of ReplaceAt and BackProp reveals that the only major
difference between them is fn? vs merge . This implies the Primitive backProp
can be used to replicate replaceAt.

replaceAt(in? , path? , with?) ≡
backProp (in? , path? , fnSeed? ,merge) ⇐⇒ with? = fnSeed?

Above highlights the arguments with? ∧ fnSeed? which serve the same purpose
within backProp and replaceAt.

• Within ReplaceAt, the naming with? indicates its usage with respect to
merge and the overall functionality of the Primitive

• Within BackProp, the naming fnSeed? indicates that the usage of the
variable within fn? is unknowable but this value will be passed to fn? on
the very first iteration of the Primitive

51

In both cases, the variable is put into a tuple and passed to fn?.

backProp(X, 〈2, foo, x〉, fn! ,merge) = 〈x0, x1, 〈〈foo 7→ 〈〈bar 7→ buz, x 7→ ZZZ〉〉〉〉〉

The notable limitation of backProp are enumerated in the bullets bellow and
the Primitive walkBack is introduced to address them.

• expectation of a seeding value (fnSeed?) as a passed in argument

• the general dismissal of the value (parentj) located at path? which is
potentially being overwritten

8.2.4 Walk Back

In the Primitive walkBack, fnSeed? is assumed to be the result of a function
fn?δ which is passed in as an argument. fn?δ will be passed parentj as an
argument in order to produce fnSeed?. This Value will then be used exactly as
it was in backProp given walkBack expects another function argument fn?nav.

walkBack(in? , path? , fn?δ , fn?nav)

In fact, the usage of fn?nav in WalkBack is exactly the same as the usage of
fn? in BackProp as fn?nav is passed to backProp as fn?.

WalkBack[V,Collection, (7→), (7→)]
BackProp
in? , out! : V
path? : Collection
fn?δ , fn?nav : (7→)
walkBack : V × Collection× (7→)× (7→)�→ V

walkBack = 〈getIn , fn?δ , backProp 〉

out! = walkBack(in? , path? , fn?δ , fn?nav) •
let fnSeed == fn?δ (getIn(in? , path?))
= backProp(in? , path? , fnSeed, fn?nav)

By replacing fnSeed? with fn?δ as an argument

• walkBack can be used to describe predicate based traversal of in?

• walkBack can be used to update Values at arbitrary nesting within in?
and at the same time describe how those changes affect the rest of in?

walkBack serves as a graph traversal template Primitive whose behavior is
defined in terms of the nodes within in? and the interpretation of those nodes
via fn?δ and fn?nav. This establishes the means for defining Primitives which
can make longitudinal updates as needed before making horizontal movements
through some in?. In order for backProp to be used in the same way, the
required state must be managed by

52

• fnnav

• some higher level Primitive that contains backProp (see WalkBack)

This important difference means walkBack can be used to replicate backProp
but the opposite is not always true.

walkBack(in? , path? , fn?δ , fn?nav) ≡
backProp(in? , path? , fnSeed? , fn?nav) ⇐⇒ fnSeed? = fn?δ (getIn(in? , path?))

This means replaceAt can also be replicated.

replaceAt(in? , path? , with?) ≡
(backProp (in? , path? , fnSeed? ,merge) ⇐⇒ with? = fnSeed?) ≡

walkBack(in? , path? , fn?δ ,merge) ⇐⇒
fn?δ (getIn(in? , path?)) = fnSeed? = with?

The following examples demonstrate the functionality of walkBack

walkBack(X, 〈0〉, array? ,merge) = 〈false, x1, x2〉
walkBack(X, 〈2, qux〉, fn ,merge) = 〈x0, x1, (x2 ∪ qux 7→ ZZZ)〉
walkBack(X, 〈1, 0〉, succ ,merge) = 〈x0, 〈b, b, c〉, x2〉

8.3 Summary

The following is a summary of the general process which has been described
in the previous sections. The variable names here are NOT intended to be 1:1
with those in the formal definitions (but there is some overlap) and the summary
utilizes the Traversal Operations defined at the start of the section.

1. navigate down into the provided value in? up until the second to last value
in?path?j−1 as described by the provided path?

in?path?j−1
: V

path?j−1⇒ path? −C j ⇒ path?C (dom path? \ {j})

2. extract any existing data mapped to atIndex(path? , j) from the result of
step 1

in?path? : V

path?⇒ path?j−1 ∪ (j, atIndex(path? , j))

3. create the mapping (atIndex(path? , j), in?path?) labeled here as args?

args? = (atIndex(path? , j), in?path?)

args?∈ in?path?j−1

first(args?) = atIndex(path? , j)

53

4. pass in?path? to the provided function fn? to produce some output fn!

fn! = fn? (second(args?)) = fn? (in?path?)

5. replace the previous mapping args? within in?path?j−1 with fn! at atIndex(path? , j)

childj = first(args?) 7→ fn!
in! ?path?j−1

= merge((in?pathj−1
, fn!), first(args?))

childj ∈ in! ?path?j−1

childj 6∈ in?path?j−1 ⇐⇒ childj 6= args?
args?∈ in?path?j−1

args? 6∈ in! ?path?j−1
⇐⇒ args? 6= childj

6. retrace navigation back up from in! ?path?j−1
, updating the mapping at

each path?n ∈ path? without touching any other mappings.

in! ?path?j−1
−Cfirst(args?) = in?path?j−1

−Cfirst(args?) ⇐⇒ args? 6= childj

args? 6= childj ⇒ second(args?) 6= second(childj)
in! ?path?j−1

−Cfirst(args?)⇒ in! ?path?j−1 C (dom in! ?path?j−1 \ first(args?))

7. return out! after the final update is made to in?.

childi = atIndex(path? , i) 7→ in! ?path?i
in! ?path?i = merge((in?path?i , in! ?path?i+1), atIndex(path? , i+ 1))

out! = merge((in? , second(childi)), first(childi)) •
in? −Chead(path?) = out! −Chead(path?)⇒
∀(a, b) ∈ path? • b = atIndex(path? , a) | ∃ a • in?a = out!a ⇐⇒ a 6= head(path?)

8.4 Replace At, Append At and Update At

In the summary of walkBack above, the update at the target location within
in? takes place at step 4. The result of step 4, fn!, will overwrite the mapping
args such that fn! replaces in?path? due to fn?nav = merge . This results in
the replacement of one mapping at each level of nesting such that the overall
structure, composition and size of out! is comparable to in? unless fn?δ dictates
otherwise. While the functionality of fnnav has been constrained here to always
be an overwriting process, the same constraint is not placed on fn?δ.

8.4.1 Replace At

The Primitive replaceAt was first defined in terms of the Traversal Operations
and then served as the starting point for abstracting away aspects of func-
tionality and delegating their responsibility to some passed in function until
WalkBack was reached. An alternate form of this formal definition is presented
below such that replaceAt is defined in terms of walkBack.

54

ReplaceAt[V,Collection, V]
WalkBack,Merge
in? , with? , out! , fn!δ : V
path? : Collection
fnδ : V 7→ V
replaceAt : V × Collection× V �→ V

replaceAt = 〈walkBack 〉

out! = replaceAt(in? , path? , with?) = walkBack(in? , path? , fnδ,merge) •
let fn!δ == fnδ(getIn(in? , path?)) = with?⇒

walkBack(in? , path? , fnδ,merge) ≡
backProp(in? , path? , fn!δ ,merge) ≡

backProp(in? , path? , with? ,merge)

• fnδ is defined within ReplaceAt as it performs a very simple task; ignore
getIn(in? , path?) and return with?

• Here, fnδ represents one of the main general categories of update; re-
placement of a value such that the result of the replacement is in no way
dependent upon the thing being replaced.

The following examples were pulled from the section containing the first version
of ReplaceAt as they still hold true.

replaceAt(X, 〈2, foo, q〉, fn!) = 〈x0, x1, 〈〈foo 7→ 〈〈bar 7→ buz, x 7→ y, q 7→ ZZZ〉〉〉〉〉
replaceAt(X, 〈2, foo, x〉, fn!) = 〈x0, x1, 〈〈foo 7→ 〈〈bar 7→ buz, x 7→ ZZZ〉〉〉〉〉

8.4.2 Append At

In order to define the Primitive appendAt, the Traversal Operation conj is used.
In order to demonstrate the usage of conj as fn?δ of walkBack, a syntax not yet
formally defined in this document is defined. It is an extension of the shorthand
valindex = get(V al, index) as seen in examples like

conj(x0, false) = 〈true, false〉 = 〈x0, false〉
conj(X,X) = 〈x0, x1, x2, 〈x0, x1, x2〉〉

The following expands that usage to describe following some path? into a Collection
or KV .

Xpath? = getIn(X, path?)

X〈1〉 = x1 = 〈a, b, c〉
X〈1,0〉 = a

This syntax is used for the placeholder Xpath? so that the role of fn?δ can be
demonstrated within the arguments passed to walkBack. This notation can be

55

used to describe how arguments passed to a top level function get used within
component functions without writing the equivalent Z schema. This shorthand
can also be used within Z schemas.

walkBack(X, 〈1〉,map (conj ,X〈1〉, a),merge) = 〈x0, 〈〈a, a〉, 〈b, a〉, 〈c, a〉〉, x2〉
walkBack(X, 〈1〉, conj (X〈1〉, a),merge) = 〈x0, 〈a, b, c, a〉, x2〉

Additive updates are another common type of updating encountered when work-

ing with xAPI data. Conj is a derivative of a but scoped to DAVE and used
to define the Primitive appendAt.

AppendAt[V,Collection, V]
WalkBack,Conj,Merge
in? , toEnd? , out! : V
path? : Collection
appendAt : V × Collection× V �→ V

appendAt = 〈walkBack 〉

out! = appendAt(in? , path? , toEnd?) ≡
walkBack(in? , path? , conj (in?path? , toEnd?) ,merge)⇒

backProp(in? , path? , fn!δ ,merge) ⇐⇒
fn!δ = fn?δ (in?path? , toEnd?) •

fn?δ (in?path? , toEnd?) = fn?δ↔ (in?path? , toEnd?) •
conj (in?path? , toEnd?) = conj ↔ (in?path? , toEnd?)⇒

(fn?δ = conj)∧
(fn!δ 6= conj (in?path? , toEnd?))∧
(fn!δ = conj(in?path? , toEnd?))

This schema features a new notation which highlights evaluation nuances.

• fn?δ is used to represent the function itself

• fn?δ (in?path? , toEnd?) is used to represent the relationship between
the function and the arguments it WILL be passed

• fn!δ ≡ fn?δ (in?path? , toEnd?) is used to represent the output of fn?δ
given the passed in arguments

Such that the following are all equivalent expressions.

appendAt(in? , path? , toEnd?) ≡
walkBack(in? , path? , fn?δ ,merge) ≡
walkBack(in? , path? , conj (in?path? , toEnd?),merge) ≡
walkBack(in? , path? , fn?δ (in?path? , toEnd?),merge) ≡

backProp(in? , path? , fn!δ ,merge) ≡
backProp(in? , path? , conj(in?path? , toEnd?),merge)

The following example demonstrates this usage.

56

walkBack(X, 〈1〉,map (append ,X〈1〉, a),merge) = 〈x0, 〈〈a, a〉, 〈b, a〉, 〈c, a〉〉, x2〉

map (append ,X〈1〉, a) ≡ map (append (X〈1,n〉, a), X〈1〉, a) • n ∈ domX〈1〉

The following examples demonstrate the functionality of appendAt.

appendAt(X, 〈1〉, e) = 〈x0, 〈a, b, c, e〉, x2〉
appendAt(X, 〈2〉, 〈1, 2, 3〉) = 〈x0, x1, 〈x2, 〈1, 2, 3〉〉〉
appendAt(X, 〈0〉, bar) = 〈〈x0, bar〉, x1, x2〉

8.4.3 Update At

The Primitive updateAt does not make any assumptions about how the relation-
ship between getIn(in? , path?) and fn!δ is established. This makes it possible
to define both replaceAt and appendAt using updateAt.

UpdateAt[V,Collection, (7→)]
WalkBack,Merge
in? , out! : V
path? : Collection
fn?δ : (7→)
updateAt : V × Collection× (7→)�→ V

updateAt = 〈walkBack 〉

out! = updateAt(in? , path? , fn?δ) =
walkBack(in? , path? , fn?δ ,merge)⇒

backProp(in? , path? , fn!δ ,merge)

• The item found at the target path getIn(in? , path?) is passed to fn?δ
such that the calculation of the replacement fn!δ CAN be dependent upon
getIn(in? , path?).

The following examples demonstrate the functionality of the Primitive updateAt

updateAt(X, 〈0〉, array?) = 〈false, x1, x2〉
updateAt(X, 〈1, 0〉, fn?δ (X〈1,0〉)) = 〈x0, 〈z, b, c〉, x2〉 ⇐⇒ fn?δ (X〈1,0〉) = z

and the following shows how updateAt can be used to define appendAt

appendAt(in? , path? , toEnd?) ≡ updateAt(in? , path? , conj (in?path? , toEnd?))

and replaceAt.

replaceAt(in? , path? , with?) ≡ updateAt(in? , path? ,merge ((in?path?j−1
, with?), 〈 path?j 〉))

57

9 Rate of Completions

As learners engage in activities supported by a learning ecosystem, they will
build up a history of learning experiences. When the digital resources of that
learning ecosystem adhere to a framework dedicated to supporting and under-
standing the learner, such as the Total Learning Architecture (TLA), the data
produced by the learning ecosystem will contribute to each learner’s digital foot-
print. One way that footprint can be made actionable is through analysis of
trends and/or patterns of activity. The following Algorithm does exactly this
but scoped to:

• events describing or asserting that a learner completed a learning activity
or exercise.

• events which happened within some target window of time

9.1 Alignment to DAVE Algorithm Definition

The schema RateOfCompletions serves as the first formal definition of an Al-
gorithm which implements the definition of a DAVE Algorithm presented in the
section Algorithm Formal Definition(6.6) on page 32. RateOfCompletions is
used to introduce the alignment between the generic components of Algorithm
and their corresponding definitions within this domain specific use case. In gen-
eral, all DAVE Algorithm definitions must reference the schema Algorithm and
the schemas corresponding to the different components of Algorithm. Within
RateOfCompletions, bothAlgorithm.algorithm.algorithmIter andROCalgorithmIter
are fully expanded for clarity. This is not a requirement of alignment schemas,
but alignment schemas should feature:

• an expanded definition of the use case specific algorithmIter

• binding of the use case specific algorithmIter toAlgorithm.algorithm.algorithmIter

Typically, an alignment schema would be defined after its component schemas
but because RateOfCompletions is the first of its kind, it is featured first to
introduce the notation by example and set the stage for the following component
definitions. The alignments established in RateOfCompletions are further ex-
panded upon within the corresponding definition of each individual component.

9.1.1 Components

Within each component definition, in order to connect the dots between

• Algorithm and its components

• RateOfCompletions and its components

58

the symbol ; is used. This establishes that the constraints defined in the more
generic component formal definitions apply to the schema being binded to. This
is formalized within each of the RateOfCompletions component schemas via

genericSchema.primitiveName = 〈body〉

〈body〉; localSchema.primitiveName = localSchema.primitiveChain

9.2 Formal Definition

The application of the notation described above to RateOfCompletions results
in the following definition with respect to schemas

RateOfCompletions ::=
Algorithm o

9RateOfCompletions ⇒
(Init o

9 RateOfCompletionsInit)∧
(Relevant? o

9RateOfCompletionsRelevant?)∧
(Accept? o

9RateOfCompletionsAccept?)∧
(Step o

9 RateOfCompletionsStep)∧
(Result o

9 RateOfCompletionsResult)

such that the 〈body〉 within each of the generic schema definitions is substi-
tuted for the Primitive chain defined within each of the local schemas. Here,
the components of RateOfCompletions use a naming scheme of Container +
AlgorithmComponent but this pattern is not required. It is used here strictly
for additional highlighting of the syntax introduced above for connecting the
generic definition of an Algorithm to an Implementation of that methodology
much like the concepts underlying Java Interfaces.

59

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

∆RateOfCompletions[KV,Collection,KV]
Algorithm
RateOfCompletionsInit
RateOfCompletionsRelevant?
RateOfCompletionsAccept?
RateOfCompletionsStep
RateOfCompletionsResult
rateOfCompletions : KV × Collection×KV →→ KV
state? , opt? , state! : KV
S? : Collection

Algorithm.algorithm.algorithmIter = 〈relevant? , accept? , step 〉
ROCalgorithmIter = 〈RateOfCompletionsRelevant? .relevant? ,

RateOfCompletionsAccept? .accept? ,
RateOfCompletionsStep.step 〉

Algorithm.algorithm.algorithmIter ; ROCalgorithmIter ⇒
(Algorithm.algorithm.algorithmIter.relevant? ;

RateOfCompletionsRelevant? .relevant?)∧
(Algorithm.algorithm.algorithmIter.accept? ;

RateOfCompletionsAccept? .accept?)∧
(Algorithm.algorithm.algorithmIter.step ;

RateOfCompletionsStep.step)

state! = rateOfCompletions(state? , S? , opt?) ≡ algorithm(state? , S? , opt?) ⇐⇒
(Algorithm.algorithm.init ; RateOfCompletionsInit.init)∧
(Algorithm.algorithm.algorithmIter ; ROCalgorithmIter)∧
(Algorithm.algorithm.result ; RateOfCompletionsResult.result)

• the . notation is used to reference components within a schema

• the ; represents alignment between components ofAlgorithm andRateOfCompletions

• the ∆ in the schema name indicates that RateOfCompletions alters the
state space of Algorithm due to usage of ;

9.3 Initialization

The first example of a component to component alignment is found within
RateOfCompletionsInit which shows how the primitiveRateOfCompletionsInit.init
is bound to 〈body〉 within Algorithm.algorithm.init. Specifically, the schema
RateOfCompletionsInit uses the Primitive updateAt such that initδ can be
used to establish the initialization logic.

9.3.1 Formal Definition

In the following, initδ could have been a stand alone Operation referenced within
RateOfCompletionsInit.

60

RateOfCompletionsInit[KV]
Init, UpdateAt
state? , state! : KV
init : KV →→ KV
initδ : V →→ KV

Init.init = 〈body〉
init = 〈updateAt 〉
Init.init; init⇒ 〈body〉 ≡ 〈updateAt 〉

initδ! = initδ(state?〈roc,completions〉) •
= (∅ ⇐⇒ 〈roc, completions〉 6∈ state?)∨

(state?〈roc,completions〉 ⇐⇒ 〈roc, completions〉 ∈ state?)

state! = init(state?) = updateAt(state? , 〈roc, completions〉, initδ) •
= (〈〈roc 7→ completions 7→ ∅〉〉 ∪ state? ⇐⇒ initδ! = ∅)∨

(state? ⇐⇒ initδ! 6= ∅)

The output of RateOfCompletionsInit.init is state! which can be one of two
things given the definition of initδ

• state! = 〈〈roc 7→ completions 7→ ∅〉〉 ∪ state?

• state! = state?

This means that the result of any previous runs of rateOfCompletions will not
be overwritten but if this is the first iteration of the Algorithm, the necessary
storage location is established within the Algorithm State such that

• RateOfCompletionsStep.step can write its output to state!〈roc,completions〉

• RateOfCompletionsResult.result can read from state!〈roc,completions〉

and by defining RateOfCompletionsInit.init in this way, it allows for chaining
of calls to rateOfCompletion such that

• the Algorithm can pick back up from the result of a previous iteration

• Other Algorithms can use the result of rateOfCompletions within their
processing

which highlights the importance of establishing a unique path for individual
Algorithms to write their results to. The example path? of 〈roc, completions〉 is
very simple but is sufficient for the current Algorithm. This path? can be made
more complex to support more advanced initδ definitions. For example, each
run of rateOfCompletions could have its own unique subpath. In this scenario,
initδ could be updated to look for the most recent run of rateOfCompletions
and use it as the seed state for the current iteration among other things.

• 〈roc, completions, run1〉

• 〈roc, completions, run2〉

61

9.3.2 Big Picture

When Algorithms write to a unique location within an Algorithm State, high
level Algorithms can be designed which chain together individual Algorithms
such that the result of one is used to seed the next. Chaining together of
Algorithms is a subject not yet covered within this report and its exact form is
still under active development. It is mentioned here to highlight the ideal usage
of Algorithm State in the context of init; Algorithm State is a mutable Map
which serves as a storage location for a collection of Algorithm(s) to write to
and/or read from such that an Algorithm can

• pick up from a previous iteration

• use the output of other Algorithm(s) to initialize the current state

• process quantities of data too large to store in local memory all at once

9.4 Relevant?

Given that the purpose of relevant? is to determine if the current Statement
(stmt?) is valid for use within step of rateOfCompletions, the validation check
itself can be implemented in several different ways but ideally, the predicate
logic is expressed using the xAPI Profiles spec.

9.4.1 xAPI Profile Validation

The specification defines xAPI Statement Templates which feature a built in
xAPI property predicate language for defining the uniquely identifying prop-
erties of an xAPI Statement. These requirements are used within validation
logic aligned to/based off of the Statement Template Validation Logic defined
in the spec. The formal definition of Statement Template validation logic is
outside the scope of this document but the following basic type is introduced to
represent an xAPI Statement Template

[TEMPLATEstmt]

such that the following is an Operation definition for validation of an xAPI
Statement stmt? against an xAPI Statement Template.

V alidateStatement[STATEMENT, TEMPLATEstmt]
stmt? : STATEMENT
template? : TEMPLATEstmt
validateStmt! : Boolean
validateStmt : STATEMENT × TEMPLATEstmt → Boolean

validateStmt! = validateStmt(stmt? , template?) = true ∨ false

This Operation can be composed with other xAPI Profile centered Operations
to define more complex predicate/validation logic like:

62

https://github.com/adlnet/xapi-profiles/blob/master/xapi-profiles-about.md
https://github.com/adlnet/xapi-profiles/blob/master/xapi-profiles-structure.md#statment-templates
https://github.com/adlnet/xapi-profiles/blob/master/xapi-profiles-structure.md#81-statement-template-rules
https://github.com/adlnet/xapi-profiles/blob/master/xapi-profiles-communication.md#statement-template-valid

• stmt? matches target xAPI Statement Template(s) defined within some
xAPI Profile(s)

• stmt? matches pred (ie, any/none/etc.) xAPI Statement Template(s)
defined within some xAPI Profile(s)

• stmt? matches target/pred xAPI Statement Template(s) within target/pred
xAPI Pattern(s) defined within some xAPI Profile(s)

9.4.2 xAPI Predicates

In order to avoid brining in additional xAPI Profile complexity, the logic of
RateOfCompletionsRelevant? is implemented using predicates which corre-
spond to checks which would happen during validateStmt given Statement
Templates containing the following constraints.

• is the Object of the Statement an Activity?

• is the Verb indicative of a completion event?

• is Result.completion used to indicate completion?

In general, each of these Primitives navigates into a Statement to retrieve the
value at a target path? and check it against the predicate defined in the schema.
This generic functionality is defined as the Primitive stmtPred.

StatementPredicate[STATEMENT,Collection, (7→)]
GetIn
stmt? : STATEMENT
path? : Collection
fnpred! : Boolean
fnpred? : (7→)
stmtPred : STATEMENT × Collection× (7→)→ Boolean

stmtPred = 〈getIn , fnpred? (stmt?path?)〉

fnpred! = stmtPred(stmt? , path? , fnpred?)
= fnpred? (getIn(stmt? , path?)) •
= true ∨ false

This Primitive covers the most basic kind of check performed when validating
an xAPI Statement against an xAPI Statement Template; does the Statement
property found at stmt?path? adhere to the expectation(s) defined within the
provided predicate. The next three schemas will define the statement pred-
icates used within RateOfCompletionsRelevant? but these predicates could
have been contained within some number of xAPI Statement Template(s).

63

ActivityObject? [STATEMENT]
StatementPredicate
stmt? : STATEMENT
path? : Collection
fnpred! : Boolean
fnpred : V → Boolean
activityObject? : STATEMENT → Boolean

activityObject? = 〈stmtPred 〉

path? = 〈object, objectType〉

fnpred! = activityObject? (stmt?)
= stmtPred(stmt? , path? , fnpred)
= fnpred(stmt?path?)
= true ⇐⇒ stmt?path? = Activity ∨ ∅

• Determine if the Object of stmt? is an Activity

CompletionV erb? [STATEMENT]
StatementPredicate
stmt? : STATEMENT
path? : Collection
fnpred! : Boolean
fnpred : V → Boolean
completionV erb? : STATEMENT → Boolean

completionV erb? = 〈stmtPred 〉

path? = 〈verb, id〉

fnpred! = completionV erb? (stmt?)
= stmtPred(stmt? , path? , fnpred)
= fnpred(stmt?path?)
= true ⇐⇒ stmt?path? =

http : //adlnet.gov/expapi/verbs/passed ∨
https : //w3id.org/xapi/dod− isd/verbs/answered ∨
http : //adlnet.gov/expapi/verbs/completed

• Determine if the Verb id within stmt? is one of

– passed

– answered

– completed

• List of target Verb ids can be expanded as needed

64

https://github.com/adlnet/xAPI-Spec/blob/master/xAPI-About.md#def-activity

CompletionResult? [STATEMENT]
StatementPredicate
stmt? : STATEMENT
path? : Collection
fnpred! : Boolean
fnpred : V → Boolean
completionResult? : STATEMENT → Boolean

completionResult? = 〈stmtPred 〉

path? = 〈result, completion〉

fnpred! = completionResult? (stmt?)
= stmtPred(stmt? , path? , fnpred)
= fnpred(stmt?path?)
= true ⇐⇒ stmt?path? = true

• Determine if completion is set to true within result field of an xAPI State-
ment

9.4.3 Formal Definition

The xAPI Predicates defined above are used withinRateOfCompletionsRelevant?
to establish the logic which decides if stmt? is

• passed on to the next step

• discarded for the next Statement in the batch passed to rateOfCompletions

ΞRateOfCompletionsRelevant? [KV, STATEMENT]
Relevant?
state? : KV
stmt? : STATEMENT
relevant! : Boolean
relevant? : KV × STATEMENT → Boolean

Relevant.relevant? = 〈body〉
〈body〉; relevant? = 〈 activityObject? , 〈 completionV erb? , completionResult? 〉〉

relevant! = relevant? (state? , stmt?)
= true ⇐⇒ (activityObject(stmt?) = true)∧

((completionV erb? (stmt?) = true)∨
(completionResult? (stmt?) = true))

The schema prefix Ξ is used to indicate that here, relevant? does not modify
state?. Regardless, in order for relevant? to return true

65

• The object of stmt? must be an activity

• The Verb of stmt? has an id which matches one of the target IDs

• The Result of stmt indicates that a completion happened

9.5 Accept?

The Accept? component of a DAVE Algorithm is a secondary validation check
prior to the potential passing of stmt? off to Step. At this point, stmt? has been
validated to be relevant to the execution of an Algorithm so the final check is
based off of the current Algorithm State state?. In many cases this check will
not be necessary but this step matters when the ability to process stmt? is
dependent upon some property of state?. This component of an Algorithm
could be used to establish the placeholder mapping within state! if it doesn’t
exist for the current stmt? but this can also be handled within step as done in
the schema ProcessCompletionStatement defined later on.

ΞRateOfCompletionsAccept? [KV, STATEMENT]
Accept?
state? : KV
stmt? : STATEMENT
accept! : Boolean
fnpred : KV × STATEMENT → Boolean
accept? : KV × STATEMENT → Boolean

Accept? .accept? = 〈body〉
accept? = 〈fnpred 〉
Accept? .accept?; accept?⇒ 〈body〉 ≡ 〈fnpred 〉

accept! = accept? (state? , stmt?)
= fnpred(state? , stmt?) = true

The Algorithm rateOfCompletions does not need to check state? before passing
stmt? to step so fnpred will always return true. If this was not the case, fnpred
would be defined as a predicate describing the relationship between state? and
stmt? which determines if true or false is returned. Additionally, if false would
be returned, Accept can take the appropriate steps to ensure state! is updated
such that accept? (state! , stmt?) = true.

9.6 Step

The actual processing of stmt? happens within step and may or may not result
in an updated Algorithm State state!. In the case of rateOfCompletions, each
call to step is expected to return an altered state such that state! 6= state?
and the schema RateOfCompletionsStep is prefixed with ∆ accordingly. The
updated state! will either have an existing mapping for objectId ∈ state? altered
or a completely new mapping for objectId added to state?.

66

9.6.1 Processing Summary

The execution of step can be summarized as:

1. parse the relevant information from stmt

• currentT ime
• objectName
• objectId

2. resolve previous state (if it exists) given objectId

3. update the range of time to include currentT ime if not already within
the existing interval for objectId

4. update the counter tracking the number of times objectId has been in a
stmt? passed to step

5. add objectName to the set of names associated with objectId if not al-
ready a member.

9.6.2 Helper Functions

The following Operations and Primitives are defined for abstracting the func-
tionality of each process within step in order to reduce the noise withinRateOfCompletionsStep.

ParseCompletionStatement[STATEMENT]
GetIn
stmt? : STATEMENT
currentT ime : TIMESTAMP
objectName, parseStmt! : KV
objectId : STRING
parseStmt : STATEMENT �→ KV

parseStmt = 〈getIn , associate 〉2

currentT ime = getIn(stmt? , 〈timestamp〉)
objectName = getIn(stmt? , 〈object, definition, name〉)
objectId = getIn(stmt? , 〈object, id〉)

parseStmt! = parseStmt(stmt?) •
let withT ime == associate(〈〈〉〉, currentT, currentT ime)

withName == associate(withT ime, objName, objectName)
= associate(withName, objId, objectId)⇒

〈〈currentT 7→ currentT ime, objName 7→ objectName, objId 7→ objectId〉〉

• parse timestamp, object name and object id from stmt?

67

ResolvePreviousCompletionState[KV,KV]
GetIn
state? , parsed? , prevState! : KV
getPreviousState : KV ×KV 7→ KV

getPreviousState = 〈getIn , getIn 〉
objectId = getIn(parsed? , objId)
prevState! = getPreviousState(state? , parsed?) = getIn(state? , 〈roc, completions, objectId〉)

• look in state? for any previous record of objectId

IntervalV alGiven[TIMESTAMP, TIMESTAMP (7→)]
IsoToUnix
stmtts, statets, intervalV alGiven! : TIMESTAMP
fnpred : (7→)
fnpred! : N
intervalV alGiven : TIMESTAMP × TIMESTAMP × (7→) 7→ TIMESTAMP

intervalV alGiven = 〈isoToUnix , isoToUnix , fnpred 〉

nSecondsstmt = isoToUnix(stmtts)
nSecondsstate = isoToUnix(statets)
fnpred! = fnpred(nSecondsstmt, nSecondsstate)
intervalV alGiven! = intervalV alGiven(stmtts, statets, fnpred)

= (stmtts ⇐⇒ fnpred! = nSecondsstmt)∨
(statets ⇐⇒ fnpred! = nSecondsstate)

• return stmtts or statets based on result of fnpred

ReturnIntervalStart[TIMESTAMP, TIMESTAMP]
IntervalV alGiven
stmtts, statets, intervalstart : TIMESTAMP
fnδ! : N
fnδ : N× N 7→ N
returnIntervalStart : TIMESTAMP × TIMESTAMP 7→ TIMESTAMP

returnIntervalStart = 〈intervalV alGiven 〉

fnδ! = fnδ(nSecondsstmt, nSecondsstate)
= (nSecondsstmt ⇐⇒ nSecondsstmt ≤ nSecondsstate)∨

(nSecondsstate ⇐⇒ nSecondsstmt > nSecondsstate)
intervalstart = intervalV alGiven(stmtts, statets, fnδ)

= (stmtts ⇐⇒ fnδ! = nSecondsstmt)∨
(statets ⇐⇒ fnδ! = nSecondsstate)

• return stmtts or statets, whichever one is further back in the past.

68

ReturnIntervalEnd[TIMESTAMP, TIMESTAMP]
IntervalV alGiven
stmtts, statets, intervalend : TIMESTAMP
fnδ! : N
fnδ : N× N 7→ N
returnIntervalEnd : TIMESTAMP × TIMESTAMP 7→ TIMESTAMP

returnIntervalEnd = 〈intervalV alGiven 〉

fnδ! = fnδ(nSecondsstmt, nSecondsstate)
= (nSecondsstmt ⇐⇒ nSecondsstmt ≥ nSecondsstate)∨

(nSecondsstate ⇐⇒ nSecondsstmt < nSecondsstate)

intervalend = intervalV alGiven(stmtts, statets, fnδ)
= (stmtts ⇐⇒ fnδ! = nSecondsstmt)∨

(statets ⇐⇒ fnδ! = nSecondsstate)

• return stmtts or statets, whichever one is later on chronologically

ReturnUpdatedCount[V]
count? : V
count! : N
returnUpdatedCount : V → N

count! = returnUpdatedCount(count?)
= (count? +1 ⇐⇒ count? 6= ∅)∨

(1 ⇐⇒ (count? = 0) ∨ (count? = ∅))

• return an incremented value or 1 otherwise

ReturnUpdatedNames[Collection, STRING]
names? , names! : Collection
targetName : STRING
returnUpdatedNames : Collection× STRING→→ Collection

names?targetName = names? � targetName
names! = returnUpdatedNames(names? , targetName)

= (names? a targetName ⇐⇒ names?targetName = ∅ ⇒ targetName 6∈ names?)∨
(names? ⇐⇒ names?targetName 6= emptyset⇒ targetName ∈ names?)

• add targetName to the end of names? if targetName 6∈ names?

9.6.3 Formal Definition

The schema ProcessCompletionStatement is used to define the core function-
ality of RateOfCompletionsStep.step using the Primitive replaceAt to produce
state!.

69

∆ProcessCompletionStatement[STATEMENT,KV]
ReplaceAt
ParseCompletionStatement
ResolvePreviousCompletionState
ReturnIntervalStart
ReturnIntervalEnd
ReturnUpdatedCount
ReturnUpdatedNames
stmt? : STATEMENT
state? , state! , stateobjectId : KV
processStatement : STATEMENT ×KV �→ KV

processStatement = 〈〈parseStmt , getPreviousState 〉,
〈returnIntervalStart , returnIntervalEnd , replaceAt 〉,
〈returnUpdatedCount , replaceAt 〉,
〈returnUpdatedNames , replaceAt 〉〉

parsedstmt? = parseStmt(stmt?)
stmttimestamp = get(parsedstmt?, currentT)
stmtobjName = get(parsedstmt?, objName)
stmtobjId = get(parsedstmt?, objId)

stateobjectId = getPreviousState(state? , parsedstmt?)
intervalstart = getIn(stateobjectId, 〈domain, start〉)
intervalend = getIn(stateobjectId, 〈domain, end〉)
statenStmts = get(stateobjectId, nStmts)
statenames = get(stateobjectId, names)

intervalstart! = returnIntervalStart(stmttimestamp, intervalstart)
intervalend! = returnIntervalEnd(stmttimestamp, intervalend)
interval! = 〈〈start 7→ intervalstart! , end 7→ intervalend! 〉〉

nStmts! = returnUpdatedCount(statenStmts)
names! = returnUpdatedNames(statenames, stmtobjName)

state! = processStatement(stmt? , state?) •
let intervalδ == replaceAt(state? , 〈roc, completions, stmtobjId, domain〉, interval!)

nStmtsδ == replaceAt(intervalδ, 〈roc, completions, stmtobjId, nStmts〉, nStmts!)
= replaceAt(nStmtsδ, 〈roc, completions, stmtobjId, names〉, names!)

• update state! to include a mapping with Key stmtobjId or update an
existing mapping identified by stmtobjId

The schemaRateOfCompletionsStep introduces the alignment withAlgorithm.step
such that 〈body〉 = processStatement as defined by ProcessCompletionStatement.

70

∆RateOfCompletionsStep[KV, STATEMENT]
Step
ProcessCompletionStatement
state? , state! : KV
stmt? : STATEMENT
step : KV × STATEMENT →→ KV

Step.step = 〈body〉
step = 〈processStatement 〉
Step.step; step⇒

〈body〉 ≡ 〈〈parseStmt , getPreviousState 〉,
〈returnIntervalStart , returnIntervalEnd , replaceAt 〉,
〈returnUpdatedCount , replaceAt 〉,
〈returnUpdatedNames , replaceAt 〉〉

state! = step(state? , stmt?) = processStatement(stmt? , state?) •
state! 6= state? ∧
getIn(state! , 〈roc, completions, stmtobjId〉) 6= ∅

For each unique stmtobjId passed to step, there should be a corresponding map-
ping in state〈roc,completions〉 which looks like

stmtobjId 7→ 〈〈domain 7→ 〈〈(start, intervalstart!), (end, intervalend!)〉〉
nStmts 7→ nStmts!
names 7→ names! 〉〉

9.7 Result

The interval of intervalstart! to intervalend! can be partitioned based on the
passed in opt named timeUnit such that for each unique stmtobjId, the metric n
completions per time unit can be calculated and added to state〈roc,completions,stmtobjId,rate〉.

71

RateOfCompletionsResult[KV,KV]
Result
RateOf
replaceAt
opt? , state? , result! : KV
result : KV ×KV →→ KV

Result.result = 〈body〉
〈body〉; result = 〈replaceAt 〉#dom(state〈roc,completions〉)

state! = result(state? , opt?) •
let timeUnit == atKey(opt? , timeUnit) •

∀stmtobjId ∈ state〈roc,completions〉 | ∃1state!objId •
let nO == getIn(state? , 〈roc, completions, stmtobjId, nStmts〉)

start == getIn(state? , 〈roc, completions, stmtobjId, domain, start〉)
end == getIn(state? , 〈roc, completions, stmtobjId, domain, end〉)
rateobjId == rateOf(nO, start, end, timeUnit)

state!objId = replaceAt(state? , 〈roc, completions, stmtobjId, rate〉, rateobjId)
=

∑
state!objId • ∀stmtobjId | getIn(state! , 〈roc, completions, stmtobjId, rate〉) ∈ Z

• state! =
∑
state!objId is an alternative way to describe the aggregation of

all changes made to state?.

• rateOf performs the calculation which is used to update state? with con-
sideration to opt?

• timeUnit will default to day if not specified within opt?

The output of rateOfCompletions is a state! which contains a mapping of
following shape for each unique stmtobjId passed to rateOfCompletions, each
of which can be found at the path 〈roc, completions, stmtobjId〉.

stmtobjId 7→ 〈〈domain 7→ 〈〈(start, intervalstart!), (end, intervalend!)〉〉
nStmts 7→ nStmts!
names 7→ names!
rate 7→ rateobjId〉〉

Any mapping within this structure can be used within a corresponding visu-
alization but the core piece of information the visualization should convey is
rateobjId.

9.8 Conclusion

This concludes the first example of a DAVE Algorithm formal definition. The
conventions established within this section should be used across all DAVE
Algorithm formal definitions in this document. If any aspect of this section
requires further explanation or clarification, please post an issue to the DAVE
github repo describing the issue or reach out to the Author(s) of this report via
some other medium.

72

Appendix A: Visualization Exemplars

Appendix A includes a typology of data visualizations which may be supported
within DAVE workbooks. These visualizations can either be one to one or one
to many in regards to the algorithms defined within this document. Future
iterations of this document will increasingly include these typologies within the
domain-question template exemplars.

73

Line Charts

0 0.5 1 1.5 2

0

1

2

3

Figure 1: Line Chart

0 0.5 1 1.5 2 2.5 3

0

2

4

Figure 2: Line Chart with Error

74

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(0)

(1)

(2)

(3)

Figure 3: Spline Chart

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

Figure 4: Quiver Chart

75

Grouping Charts

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
1

1.5

2

0 0.5 1
0

1

2

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
1

1.5

2

0 0.5 1
0

1

2

Figure 5: Grouped Line Charts

ex
ce

lle
nt

go
od

ne
ut

ra
l

no
t
go

od
po

or

0

2

4

6

8

0

8

2

0 0

#
p

a
rt

ic
ip

an
ts

Figure 6: Histogram

76

q1 q2 q3

0

2

4

6

8

10

7

9

44 4 4

1 1 1

#
p

a
rt

ic
ip

a
n
ts

passed failed incomplete

Figure 7: Bar Chart

20
03

–
20

05

20
05

–
20

06

20
06

–
20

10

20
10

–
20

20

20
20

–
20

30
0

50

100

Figure 8: Bar Chart Grouped by Time Range

77

0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Figure 9: Scatter Plot

0

30

60
90

120

150

180

210

240
270

300

330

0 0.5 1

Figure 10: Polar Chart

78

Specialized Charts

Figure 11: Gantt Chart

−4 −2 0 2 4

−4

−2

0

2

4

Figure 12: Heat Map

79

Figure 13: 3D Plot

−2 −1 0 1 2
−2

−1

0

1

2

x exp(−x2 − y2) and its gradient

Figure 14: Gradient Plot

80

	DTIC SF298 REPORT DAVE Learning Analytics Algorithms JOHNSON.pdf
	Data Analytics and Visualization Environment for xAPI and the Total Learning Architecture_With Disclaimer.pdf
	ADL Cover Page_DAVE
	20191126 REPORT DAVE Analytics Report JOHNSON.pdf
	Z Notation Introduction
	Decorations
	Types
	Sets
	Ordered Pairs
	Sequences
	Bags
	Maps
	Select Operations and Symbols
	Functions
	Ordered Pairs, Maplet and Composition of Relations
	Numeric
	Sequences
	Bags

	xAPI Formal Specification
	Basic and Free Types
	Id Schema
	Schemas for Agents, Groups and Actors
	Verb Schema
	Object Schema
	Result Schema
	Context Schema
	Timestamp and Stored Schema
	Attachments Schema
	Statement and Statements Schema

	Operations, Primitives and Algorithms
	Terminology
	Scalar
	Collection
	Key
	Value
	Map
	Statement
	Algorithm State
	Option

	Operation
	Domain
	Range

	Primitive
	Domain
	Range

	Algorithm
	Initialization
	Domain
	Range

	Relevant?
	Domain
	Range

	Accept?
	Domain
	Range

	Step
	Domain
	Range

	Result
	Domain
	Range

	Algorithm Formal Definition
	Recur
	Algorithm Iter

	Foundational Operations
	Collections
	Array?
	Append
	Remove
	At Index
	Update

	Key Value Pairs
	Map?
	Associate
	Dissociate
	At Key

	Utility
	Map
	Iso To Unix Epoch
	Timeunit To Number of Seconds

	Rate Of

	Common Primitives
	Traversal Operations
	Traversal Primitives
	Get In
	Replace At
	Back Prop
	Walk Back

	Summary
	Replace At, Append At and Update At
	Replace At
	Append At
	Update At

	Rate of Completions
	Alignment to DAVE Algorithm Definition
	Components

	Formal Definition
	Initialization
	Formal Definition
	Big Picture

	Relevant?
	xAPI Profile Validation
	xAPI Predicates
	Formal Definition

	Accept?
	Step
	Processing Summary
	Helper Functions
	Formal Definition

	Result
	Conclusion

